Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import torch | |
from transformers import TapexTokenizer, BartForConditionalGeneration | |
import datetime | |
# Load the CSV file | |
df = pd.read_csv("anomalies.csv", quotechar='"') | |
# Filter 'real' higher than 10 Million | |
df= df[df['real'] >= 1000000.] | |
# Convert 'real' column to standard float format and then to strings | |
df['real'] = df['real'].apply(lambda x: f"{x:.2f}") | |
# Fill NaN values and convert all columns to strings | |
df = df.fillna('').astype(str) | |
table_data = df | |
# Function to generate a response using the TAPEX model | |
def response(user_question, table_data): | |
a = datetime.datetime.now() | |
model_name = "microsoft/tapex-large-finetuned-wtq" | |
model = BartForConditionalGeneration.from_pretrained(model_name) | |
tokenizer = TapexTokenizer.from_pretrained(model_name) | |
queries = [user_question] | |
encoding = tokenizer(table=table_data, query=queries, padding=True, return_tensors="pt", truncation=True) | |
# Experiment with generation parameters | |
outputs = model.generate( | |
**encoding, | |
#num_beams=5, # Beam search to generate more diverse responses | |
#top_k=50, # Top-k sampling for diversity | |
#top_p=0.95, # Nucleus sampling | |
#temperature=0.7, # Temperature scaling (if supported by the model) | |
#max_length=50, # Limit the length of the generated response | |
#early_stopping=True # Stop generation when an end token is generated | |
) | |
ans = tokenizer.batch_decode(outputs, skip_special_tokens=True) | |
query_result = { | |
"Resposta": ans[0] | |
} | |
b = datetime.datetime.now() | |
print(b - a) | |
return query_result | |
# Streamlit interface | |
st.markdown(""" | |
<div style='display: flex; align-items: center;'> | |
<div style='width: 40px; height: 40px; background-color: green; border-radius: 50%; margin-right: 5px;'></div> | |
<div style='width: 40px; height: 40px; background-color: red; border-radius: 50%; margin-right: 5px;'></div> | |
<div style='width: 40px; height: 40px; background-color: yellow; border-radius: 50%; margin-right: 5px;'></div> | |
<span style='font-size: 40px; font-weight: bold;'>Chatbot do Tesouro RS</span> | |
</div> | |
""", unsafe_allow_html=True) | |
# Chat history | |
if 'history' not in st.session_state: | |
st.session_state['history'] = [] | |
# Input box for user question | |
user_question = st.text_input("Escreva sua questΓ£o aqui:", "") | |
if user_question: | |
# Add human emoji when user asks a question | |
st.session_state['history'].append(('π€', user_question)) | |
st.markdown(f"**π€ {user_question}**") | |
# Generate the response | |
bot_response = response(user_question, table_data)["Resposta"] | |
# Add robot emoji when generating response and align to the right | |
st.session_state['history'].append(('π€', bot_response)) | |
st.markdown(f"<div style='text-align: right'>**π€ {bot_response}**</div>", unsafe_allow_html=True) | |
# Clear history button | |
if st.button("Limpar"): | |
st.session_state['history'] = [] | |
# Display chat history | |
for sender, message in st.session_state['history']: | |
if sender == 'π€': | |
st.markdown(f"**π€ {message}**") | |
elif sender == 'π€': | |
st.markdown(f"<div style='text-align: right'>**π€ {message}**</div>", unsafe_allow_html=True) |