Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
from transformers import BartForConditionalGeneration, TapexTokenizer, T5ForConditionalGeneration, T5Tokenizer | |
from prophet import Prophet | |
import datetime | |
import sentencepiece as spm | |
# Caminho para o arquivo CSS, ajuste conforme a estrutura do seu projeto | |
css_file = "style.css" | |
# Abrindo e lendo o arquivo CSS | |
with open(css_file, "r") as css: | |
css_style = css.read() | |
# Markdown combinado com a importação da fonte e o HTML | |
html_content = f""" | |
<style> | |
{css_style} | |
@import url('https://fonts.googleapis.com/css2?family=Kanit:wght@700&display=swap'); | |
</style> | |
<div style='display: flex; flex-direction: column; align-items: flex-start;'> | |
<div style='display: flex; align-items: center;'> | |
<div style='width: 20px; height: 40px; background-color: green; margin-right: 1px;'></div> | |
<div style='width: 20px; height: 40px; background-color: red; margin-right: 1px;'></div> | |
<div style='width: 20px; height: 40px; background-color: yellow; margin-right: 20px;'></div> | |
<span style='font-size: 50px; font-weight: normal; font-family: "Kanit", sans-serif;'><strong>PROTAX</strong></span> | |
</div> | |
<div style='text-align: left; width: 100%;'> | |
<span style='font-size: 20px; font-weight: normal; color: #333; font-family: "Kanit", sans-serif'> | |
<strong>PRO</strong>phet & <strong>TA</strong>pex E<strong>X</strong>plorer</span> | |
</div> | |
</div> | |
""" | |
# Aplicar o markdown combinado no Streamlit | |
st.markdown(html_content, unsafe_allow_html=True) | |
# File upload interface | |
uploaded_file = st.file_uploader("Carregue um arquivo CSV ou XLSX", type=['csv', 'xlsx']) | |
if uploaded_file: | |
if 'all_anomalies' not in st.session_state: | |
with st.spinner('Aplicando modelo de série temporal...'): | |
# Load the file into a DataFrame | |
if uploaded_file.name.endswith('.csv'): | |
df = pd.read_csv(uploaded_file, quotechar='"', encoding='utf-8') | |
elif uploaded_file.name.endswith('.xlsx'): | |
df = pd.read_excel(uploaded_file) | |
# Data preprocessing for Prophet | |
new_df = df.iloc[2:, 9:-1].fillna(0) | |
new_df.columns = df.iloc[1, 9:-1] | |
new_df.columns = new_df.columns.str.replace(r" \(\d+\)", "", regex=True) | |
month_dict = { | |
'Jan': '01', 'Fev': '02', 'Mar': '03', 'Abr': '04', | |
'Mai': '05', 'Jun': '06', 'Jul': '07', 'Ago': '08', | |
'Set': '09', 'Out': '10', 'Nov': '11', 'Dez': '12' | |
} | |
def convert_column_name(column_name): | |
if column_name == 'Rótulos de Linha': | |
return column_name | |
parts = column_name.split('/') | |
month = parts[0].strip() | |
year = parts[1].strip() | |
year = ''.join(filter(str.isdigit, year)) | |
month_number = month_dict.get(month, '00') | |
return f"{month_number}/{year}" | |
new_df.columns = [convert_column_name(col) for col in new_df.columns] | |
new_df.columns = pd.to_datetime(new_df.columns, errors='coerce') | |
new_df.rename(columns={new_df.columns[0]: 'Rotulo'}, inplace=True) | |
df_clean = new_df.copy() | |
# Create an empty DataFrame to store all anomalies | |
all_anomalies = pd.DataFrame() | |
# Process each row in the DataFrame | |
for index, row in df_clean.iterrows(): | |
data = pd.DataFrame({ | |
'ds': [col for col in df_clean.columns if isinstance(col, pd.Timestamp)], | |
'y': row[[isinstance(col, pd.Timestamp) for col in df_clean.columns]].values | |
}) | |
data = data[data['y'] > 0].reset_index(drop=True) | |
if data.empty or len(data) < 2: | |
print(f"Skipping group {row['Rotulo']} because there are less than 2 non-zero observations.") | |
continue | |
try: | |
model = Prophet(interval_width=0.95) | |
model.fit(data) | |
except ValueError as e: | |
print(f"Skipping group {row['Rotulo']} due to error: {e}") | |
continue | |
future = model.make_future_dataframe(periods=12, freq='M') | |
forecast = model.predict(future) | |
num_real = len(data) | |
num_forecast = len(forecast) | |
real_values = list(data['y']) + [None] * (num_forecast - num_real) | |
forecast['real'] = real_values | |
anomalies = forecast[(forecast['real'] < forecast['yhat_lower']) | (forecast['real'] > forecast['yhat_upper'])] | |
anomalies['Group'] = row['Rotulo'] | |
all_anomalies = pd.concat([all_anomalies, anomalies[['ds', 'real', 'Group']]], ignore_index=True) | |
# Store the result in session state | |
all_anomalies.rename(columns={"ds": "datetime", "real": "monetary value", "Group": "group"}, inplace=True) | |
all_anomalies = all_anomalies[all_anomalies['monetary value'].astype('float') >= 10,000,000.00] | |
all_anomalies['monetary value'] = all_anomalies['monetary value'].apply(lambda x: f"{x:.2f}") | |
all_anomalies.sort_values(by=['monetary value'], ascending=False, inplace=True) | |
all_anomalies = all_anomalies.fillna('').astype(str) | |
st.session_state['all_anomalies'] = all_anomalies | |
# Load translation models | |
pt_en_translator = T5ForConditionalGeneration.from_pretrained("unicamp-dl/translation-pt-en-t5") | |
en_pt_translator = T5ForConditionalGeneration.from_pretrained("unicamp-dl/translation-en-pt-t5") | |
tokenizer = T5Tokenizer.from_pretrained("unicamp-dl/translation-pt-en-t5") | |
# Load TAPEX model | |
tapex_model = BartForConditionalGeneration.from_pretrained("microsoft/tapex-large-finetuned-wtq") | |
tapex_tokenizer = TapexTokenizer.from_pretrained("microsoft/tapex-large-finetuned-wtq") | |
def translate(text, model, tokenizer, source_lang="pt", target_lang="en"): | |
input_ids = tokenizer.encode(text, return_tensors="pt", add_special_tokens=True) | |
outputs = model.generate(input_ids) | |
translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return translated_text | |
def response(user_question, table_data): | |
question_en = translate(user_question, pt_en_translator, tokenizer, source_lang="pt", target_lang="en") | |
encoding = tapex_tokenizer(table=table_data, query=[question_en], padding=True, return_tensors="pt", truncation=True) | |
outputs = tapex_model.generate(**encoding) | |
response_en = tapex_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] | |
response_pt = translate(response_en, en_pt_translator, tokenizer, source_lang="en", target_lang="pt") | |
return response_pt | |
# Streamlit interface | |
st.dataframe(st.session_state['all_anomalies'].head()) | |
# Chat history | |
if 'history' not in st.session_state: | |
st.session_state['history'] = [] | |
user_question = st.text_input("Escreva sua questão aqui:", "") | |
if user_question: | |
st.session_state['history'].append(('👤', user_question)) | |
st.markdown(f"**👤 {user_question}**") | |
bot_response = response(user_question, st.session_state['all_anomalies']) | |
st.session_state['history'].append(('🤖', bot_response)) | |
st.markdown(f"<div style='text-align: right'>**🤖 {bot_response}**</div>", unsafe_allow_html=True) | |
if st.button("Limpar"): | |
st.session_state['history'] = [] | |
for sender, message in st.session_state['history']: | |
if sender == '👤': | |
st.markdown(f"**👤 {message}**") | |
elif sender == '🤖': | |
st.markdown(f"<div style='text-align: right'>**🤖 {message}**</div>", unsafe_allow_html=True) | |
else: | |
st.warning("Por favor, carregue um arquivo CSV ou XLSX para começar.") | |