Spaces:
Running
Running
fschwartzer
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -3,31 +3,29 @@ import pandas as pd
|
|
3 |
import torch
|
4 |
from transformers import pipeline
|
5 |
import datetime
|
6 |
-
#from datasets import load_dataset
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
|
14 |
-
#
|
15 |
-
#print(df.head())
|
16 |
-
|
17 |
-
df = pd.read_csv("anomalies.csv",quotechar='"',dtype={col: str for col in pd.read_csv('anomalies.csv', nrows=1)})
|
18 |
df = df.fillna('').astype(str)
|
19 |
|
20 |
-
|
21 |
-
# Function to generate a response using the TAPEX model
|
22 |
def response(user_question, df):
|
23 |
a = datetime.datetime.now()
|
24 |
|
|
|
25 |
tqa = pipeline(task="table-question-answering", model="google/tapas-large-finetuned-wtq")
|
26 |
|
|
|
27 |
print("DataFrame shape:", df.shape)
|
28 |
print("DataFrame head:\n", df.head())
|
29 |
print("User question:", user_question)
|
30 |
|
|
|
31 |
answer = tqa(table=df, query=user_question)['answer']
|
32 |
|
33 |
query_result = {
|
@@ -35,7 +33,7 @@ def response(user_question, df):
|
|
35 |
}
|
36 |
|
37 |
b = datetime.datetime.now()
|
38 |
-
print(b - a)
|
39 |
|
40 |
return query_result
|
41 |
|
@@ -77,4 +75,4 @@ for sender, message in st.session_state['history']:
|
|
77 |
if sender == 'π€':
|
78 |
st.markdown(f"**π€ {message}**")
|
79 |
elif sender == 'π€':
|
80 |
-
st.markdown(f"<div style='text-align: right'>**π€ {message}**</div>", unsafe_allow_html=True)
|
|
|
3 |
import torch
|
4 |
from transformers import pipeline
|
5 |
import datetime
|
|
|
6 |
|
7 |
+
# Load the CSV file and ensure proper formatting
|
8 |
+
df = pd.read_csv("anomalies.csv", quotechar='"')
|
9 |
|
10 |
+
# Convert 'real' column to standard float format
|
11 |
+
df['real'] = df['real'].apply(lambda x: f"{x:.2f}")
|
12 |
|
13 |
+
# Fill NaN values and convert all columns to strings
|
|
|
|
|
|
|
14 |
df = df.fillna('').astype(str)
|
15 |
|
16 |
+
# Function to generate a response using the TAPAS model
|
|
|
17 |
def response(user_question, df):
|
18 |
a = datetime.datetime.now()
|
19 |
|
20 |
+
# Initialize the TAPAS model
|
21 |
tqa = pipeline(task="table-question-answering", model="google/tapas-large-finetuned-wtq")
|
22 |
|
23 |
+
# Debugging information
|
24 |
print("DataFrame shape:", df.shape)
|
25 |
print("DataFrame head:\n", df.head())
|
26 |
print("User question:", user_question)
|
27 |
|
28 |
+
# Query the TAPAS model
|
29 |
answer = tqa(table=df, query=user_question)['answer']
|
30 |
|
31 |
query_result = {
|
|
|
33 |
}
|
34 |
|
35 |
b = datetime.datetime.now()
|
36 |
+
print("Time taken:", b - a)
|
37 |
|
38 |
return query_result
|
39 |
|
|
|
75 |
if sender == 'π€':
|
76 |
st.markdown(f"**π€ {message}**")
|
77 |
elif sender == 'π€':
|
78 |
+
st.markdown(f"<div style='text-align: right'>**π€ {message}**</div>", unsafe_allow_html=True)
|