fschwartzer commited on
Commit
7e9ae9e
·
verified ·
1 Parent(s): 7212b4f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -9
app.py CHANGED
@@ -27,15 +27,15 @@ html_content = f"""
27
  st.markdown(html_content, unsafe_allow_html=True)
28
 
29
  # Cache models to prevent re-loading on every run
30
- @st.cache_resource
31
  def load_translation_model(model_name):
32
  return T5ForConditionalGeneration.from_pretrained(model_name)
33
 
34
- @st.cache_resource
35
  def load_tapex_model():
36
  return BartForConditionalGeneration.from_pretrained("microsoft/tapex-large-finetuned-wtq")
37
 
38
- @st.cache_resource
39
  def load_tapex_tokenizer():
40
  return TapexTokenizer.from_pretrained("microsoft/tapex-large-finetuned-wtq")
41
 
@@ -111,8 +111,8 @@ def apply_prophet(df_clean):
111
  return pd.DataFrame()
112
 
113
  # Debugging: Check structure of df_clean
114
- st.write("Estrutura do DataFrame df_clean:")
115
- st.write(df_clean)
116
 
117
  # Criar um DataFrame vazio para armazenar todas as anomalias
118
  all_anomalies = pd.DataFrame()
@@ -127,8 +127,8 @@ def apply_prophet(df_clean):
127
  })
128
 
129
  # Debugging: Check the data passed into Prophet
130
- st.write(f"Dados para Prophet - Grupo {row['Rotulo']}:")
131
- st.write(data)
132
 
133
  # Remove rows where 'y' is zero or missing
134
  data = data[data['y'] > 0].dropna().reset_index(drop=True)
@@ -156,14 +156,16 @@ def apply_prophet(df_clean):
156
  anomalies = forecast[(forecast['real'] < forecast['yhat_lower']) | (forecast['real'] > forecast['yhat_upper'])]
157
 
158
  # Debugging: Check the anomalies detected
159
- st.write(f"Anomalias detectadas para o grupo {row['Rotulo']}:")
160
- st.write(anomalies)
161
 
162
  # Add group label and append anomalies to all_anomalies DataFrame
163
  anomalies['group'] = row['Rotulo']
164
  all_anomalies = pd.concat([all_anomalies, anomalies[['ds', 'real', 'group']]], ignore_index=True)
165
 
166
  # Return the dataframe of all anomalies
 
 
167
  return all_anomalies
168
 
169
  # Initialize session states
 
27
  st.markdown(html_content, unsafe_allow_html=True)
28
 
29
  # Cache models to prevent re-loading on every run
30
+ #@st.cache_resource
31
  def load_translation_model(model_name):
32
  return T5ForConditionalGeneration.from_pretrained(model_name)
33
 
34
+ #@st.cache_resource
35
  def load_tapex_model():
36
  return BartForConditionalGeneration.from_pretrained("microsoft/tapex-large-finetuned-wtq")
37
 
38
+ #@st.cache_resource
39
  def load_tapex_tokenizer():
40
  return TapexTokenizer.from_pretrained("microsoft/tapex-large-finetuned-wtq")
41
 
 
111
  return pd.DataFrame()
112
 
113
  # Debugging: Check structure of df_clean
114
+ #st.write("Estrutura do DataFrame df_clean:")
115
+ #st.write(df_clean)
116
 
117
  # Criar um DataFrame vazio para armazenar todas as anomalias
118
  all_anomalies = pd.DataFrame()
 
127
  })
128
 
129
  # Debugging: Check the data passed into Prophet
130
+ #st.write(f"Dados para Prophet - Grupo {row['Rotulo']}:")
131
+ #st.write(data)
132
 
133
  # Remove rows where 'y' is zero or missing
134
  data = data[data['y'] > 0].dropna().reset_index(drop=True)
 
156
  anomalies = forecast[(forecast['real'] < forecast['yhat_lower']) | (forecast['real'] > forecast['yhat_upper'])]
157
 
158
  # Debugging: Check the anomalies detected
159
+ #st.write(f"Anomalias detectadas para o grupo {row['Rotulo']}:")
160
+ #st.write(anomalies)
161
 
162
  # Add group label and append anomalies to all_anomalies DataFrame
163
  anomalies['group'] = row['Rotulo']
164
  all_anomalies = pd.concat([all_anomalies, anomalies[['ds', 'real', 'group']]], ignore_index=True)
165
 
166
  # Return the dataframe of all anomalies
167
+ st.write(f"Concluída a aplicação do modelo de série tempotal")
168
+ st.write(all_anomalies.head())
169
  return all_anomalies
170
 
171
  # Initialize session states