Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -27,15 +27,15 @@ html_content = f"""
|
|
27 |
st.markdown(html_content, unsafe_allow_html=True)
|
28 |
|
29 |
# Cache models to prevent re-loading on every run
|
30 |
-
|
31 |
def load_translation_model(model_name):
|
32 |
return T5ForConditionalGeneration.from_pretrained(model_name)
|
33 |
|
34 |
-
|
35 |
def load_tapex_model():
|
36 |
return BartForConditionalGeneration.from_pretrained("microsoft/tapex-large-finetuned-wtq")
|
37 |
|
38 |
-
|
39 |
def load_tapex_tokenizer():
|
40 |
return TapexTokenizer.from_pretrained("microsoft/tapex-large-finetuned-wtq")
|
41 |
|
@@ -111,8 +111,8 @@ def apply_prophet(df_clean):
|
|
111 |
return pd.DataFrame()
|
112 |
|
113 |
# Debugging: Check structure of df_clean
|
114 |
-
st.write("Estrutura do DataFrame df_clean:")
|
115 |
-
st.write(df_clean)
|
116 |
|
117 |
# Criar um DataFrame vazio para armazenar todas as anomalias
|
118 |
all_anomalies = pd.DataFrame()
|
@@ -127,8 +127,8 @@ def apply_prophet(df_clean):
|
|
127 |
})
|
128 |
|
129 |
# Debugging: Check the data passed into Prophet
|
130 |
-
st.write(f"Dados para Prophet - Grupo {row['Rotulo']}:")
|
131 |
-
st.write(data)
|
132 |
|
133 |
# Remove rows where 'y' is zero or missing
|
134 |
data = data[data['y'] > 0].dropna().reset_index(drop=True)
|
@@ -156,14 +156,16 @@ def apply_prophet(df_clean):
|
|
156 |
anomalies = forecast[(forecast['real'] < forecast['yhat_lower']) | (forecast['real'] > forecast['yhat_upper'])]
|
157 |
|
158 |
# Debugging: Check the anomalies detected
|
159 |
-
st.write(f"Anomalias detectadas para o grupo {row['Rotulo']}:")
|
160 |
-
st.write(anomalies)
|
161 |
|
162 |
# Add group label and append anomalies to all_anomalies DataFrame
|
163 |
anomalies['group'] = row['Rotulo']
|
164 |
all_anomalies = pd.concat([all_anomalies, anomalies[['ds', 'real', 'group']]], ignore_index=True)
|
165 |
|
166 |
# Return the dataframe of all anomalies
|
|
|
|
|
167 |
return all_anomalies
|
168 |
|
169 |
# Initialize session states
|
|
|
27 |
st.markdown(html_content, unsafe_allow_html=True)
|
28 |
|
29 |
# Cache models to prevent re-loading on every run
|
30 |
+
#@st.cache_resource
|
31 |
def load_translation_model(model_name):
|
32 |
return T5ForConditionalGeneration.from_pretrained(model_name)
|
33 |
|
34 |
+
#@st.cache_resource
|
35 |
def load_tapex_model():
|
36 |
return BartForConditionalGeneration.from_pretrained("microsoft/tapex-large-finetuned-wtq")
|
37 |
|
38 |
+
#@st.cache_resource
|
39 |
def load_tapex_tokenizer():
|
40 |
return TapexTokenizer.from_pretrained("microsoft/tapex-large-finetuned-wtq")
|
41 |
|
|
|
111 |
return pd.DataFrame()
|
112 |
|
113 |
# Debugging: Check structure of df_clean
|
114 |
+
#st.write("Estrutura do DataFrame df_clean:")
|
115 |
+
#st.write(df_clean)
|
116 |
|
117 |
# Criar um DataFrame vazio para armazenar todas as anomalias
|
118 |
all_anomalies = pd.DataFrame()
|
|
|
127 |
})
|
128 |
|
129 |
# Debugging: Check the data passed into Prophet
|
130 |
+
#st.write(f"Dados para Prophet - Grupo {row['Rotulo']}:")
|
131 |
+
#st.write(data)
|
132 |
|
133 |
# Remove rows where 'y' is zero or missing
|
134 |
data = data[data['y'] > 0].dropna().reset_index(drop=True)
|
|
|
156 |
anomalies = forecast[(forecast['real'] < forecast['yhat_lower']) | (forecast['real'] > forecast['yhat_upper'])]
|
157 |
|
158 |
# Debugging: Check the anomalies detected
|
159 |
+
#st.write(f"Anomalias detectadas para o grupo {row['Rotulo']}:")
|
160 |
+
#st.write(anomalies)
|
161 |
|
162 |
# Add group label and append anomalies to all_anomalies DataFrame
|
163 |
anomalies['group'] = row['Rotulo']
|
164 |
all_anomalies = pd.concat([all_anomalies, anomalies[['ds', 'real', 'group']]], ignore_index=True)
|
165 |
|
166 |
# Return the dataframe of all anomalies
|
167 |
+
st.write(f"Concluída a aplicação do modelo de série tempotal")
|
168 |
+
st.write(all_anomalies.head())
|
169 |
return all_anomalies
|
170 |
|
171 |
# Initialize session states
|