Spaces:
Running
Running
fschwartzer
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ import torch
|
|
4 |
from transformers import pipeline
|
5 |
import datetime
|
6 |
|
7 |
-
# Load the CSV file
|
8 |
df = pd.read_csv("anomalies.csv", quotechar='"')
|
9 |
|
10 |
# Convert 'real' column to standard float format and then to strings
|
@@ -13,25 +13,30 @@ df['real'] = df['real'].apply(lambda x: f"{x:.2f}")
|
|
13 |
# Fill NaN values and convert all columns to strings
|
14 |
df = df.fillna('').astype(str)
|
15 |
|
16 |
-
#
|
17 |
-
|
|
|
|
|
18 |
|
19 |
# Function to generate a response using the TAPAS model
|
20 |
def response(user_question, df):
|
21 |
a = datetime.datetime.now()
|
22 |
|
|
|
|
|
|
|
23 |
# Initialize the TAPAS model
|
24 |
tqa = pipeline(task="table-question-answering", model="google/tapas-large-finetuned-wtq",
|
25 |
tokenizer_kwargs={"clean_up_tokenization_spaces": False})
|
26 |
|
27 |
# Debugging information
|
28 |
-
print("DataFrame shape:",
|
29 |
-
print("DataFrame head:\n",
|
30 |
print("User question:", user_question)
|
31 |
|
32 |
# Query the TAPAS model
|
33 |
try:
|
34 |
-
answer = tqa(table=
|
35 |
except IndexError as e:
|
36 |
print(f"Error: {e}")
|
37 |
answer = "Error occurred: " + str(e)
|
|
|
4 |
from transformers import pipeline
|
5 |
import datetime
|
6 |
|
7 |
+
# Load the CSV file
|
8 |
df = pd.read_csv("anomalies.csv", quotechar='"')
|
9 |
|
10 |
# Convert 'real' column to standard float format and then to strings
|
|
|
13 |
# Fill NaN values and convert all columns to strings
|
14 |
df = df.fillna('').astype(str)
|
15 |
|
16 |
+
# Subset the DataFrame for the relevant query
|
17 |
+
def subset_dataframe(df, date, group_keyword):
|
18 |
+
subset_df = df[(df['ds'] == date) & (df['Group'].str.contains(group_keyword, case=False))]
|
19 |
+
return subset_df
|
20 |
|
21 |
# Function to generate a response using the TAPAS model
|
22 |
def response(user_question, df):
|
23 |
a = datetime.datetime.now()
|
24 |
|
25 |
+
# Subset the DataFrame for December 2022 and IPVA
|
26 |
+
subset_df = subset_dataframe(df, "2022-12-01", "IPVA")
|
27 |
+
|
28 |
# Initialize the TAPAS model
|
29 |
tqa = pipeline(task="table-question-answering", model="google/tapas-large-finetuned-wtq",
|
30 |
tokenizer_kwargs={"clean_up_tokenization_spaces": False})
|
31 |
|
32 |
# Debugging information
|
33 |
+
print("Subset DataFrame shape:", subset_df.shape)
|
34 |
+
print("Subset DataFrame head:\n", subset_df.head())
|
35 |
print("User question:", user_question)
|
36 |
|
37 |
# Query the TAPAS model
|
38 |
try:
|
39 |
+
answer = tqa(table=subset_df, query=user_question)['answer']
|
40 |
except IndexError as e:
|
41 |
print(f"Error: {e}")
|
42 |
answer = "Error occurred: " + str(e)
|