fschwartzer commited on
Commit
e2af017
·
verified ·
1 Parent(s): 2c7013a

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +98 -0
app.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ from transformers import BartForConditionalGeneration, TapexTokenizer, T5ForConditionalGeneration, T5Tokenizer
4
+ import datetime
5
+ import sentencepiece as spm
6
+
7
+ # File upload interface
8
+ uploaded_file = st.file_uploader("Upload a CSV or XLSX file", type=['csv', 'xlsx'])
9
+
10
+ if uploaded_file:
11
+ # Load the file into a DataFrame
12
+ if uploaded_file.name.endswith('.csv'):
13
+ df = pd.read_csv(uploaded_file, quotechar='"', encoding='utf-8')
14
+ elif uploaded_file.name.endswith('.xlsx'):
15
+ df = pd.read_excel(uploaded_file)
16
+
17
+ df.rename(columns={"ds": "datetime", "real": "monetary value", "Explicação": "explanation"}, inplace=True)
18
+ df.sort_values(by=['datetime', 'monetary value'], ascending=False, inplace=True)
19
+ df = df[df['monetary value'] >= 10000000.]
20
+ df['monetary value'] = df['monetary value'].apply(lambda x: f"{x:.2f}")
21
+ df = df.fillna('').astype(str)
22
+ table_data = df
23
+
24
+ # Display the uploaded table
25
+ st.dataframe(table_data.head())
26
+
27
+ # Load translation models
28
+ pt_en_translator = T5ForConditionalGeneration.from_pretrained("unicamp-dl/translation-pt-en-t5")
29
+ en_pt_translator = T5ForConditionalGeneration.from_pretrained("unicamp-dl/translation-en-pt-t5")
30
+ tokenizer = T5Tokenizer.from_pretrained("unicamp-dl/translation-pt-en-t5")
31
+
32
+ # Load TAPEX model
33
+ tapex_model = BartForConditionalGeneration.from_pretrained("microsoft/tapex-large-finetuned-wtq")
34
+ tapex_tokenizer = TapexTokenizer.from_pretrained("microsoft/tapex-large-finetuned-wtq")
35
+
36
+ def translate(text, model, tokenizer, source_lang="pt", target_lang="en"):
37
+ input_ids = tokenizer.encode(text, return_tensors="pt", add_special_tokens=True)
38
+ outputs = model.generate(input_ids)
39
+ translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
40
+ return translated_text
41
+
42
+ def response(user_question, table_data):
43
+ # Traduz a pergunta para o inglês
44
+ question_en = translate(user_question, pt_en_translator, tokenizer, source_lang="pt", target_lang="en")
45
+ print(question_en)
46
+
47
+ # Gera a resposta em inglês
48
+ encoding = tapex_tokenizer(table=table_data, query=[question_en], padding=True, return_tensors="pt", truncation=True)
49
+ outputs = tapex_model.generate(**encoding)
50
+ response_en = tapex_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
51
+ print(response_en)
52
+
53
+ # Traduz a resposta para o português
54
+ response_pt = translate(response_en, en_pt_translator, tokenizer, source_lang="en", target_lang="pt")
55
+ return response_pt
56
+
57
+ # Streamlit interface
58
+
59
+ st.markdown("""
60
+ <div style='display: flex; align-items: center;'>
61
+ <div style='width: 40px; height: 40px; background-color: green; border-radius: 50%; margin-right: 5px;'></div>
62
+ <div style='width: 40px; height: 40px; background-color: red; border-radius: 50%; margin-right: 5px;'></div>
63
+ <div style='width: 40px; height: 40px; background-color: yellow; border-radius: 50%; margin-right: 5px;'></div>
64
+ <span style='font-size: 40px; font-weight: bold;'>Chatbot do Tesouro RS</span>
65
+ </div>
66
+ """, unsafe_allow_html=True)
67
+
68
+ # Chat history
69
+ if 'history' not in st.session_state:
70
+ st.session_state['history'] = []
71
+
72
+ # Input box for user question
73
+ user_question = st.text_input("Escreva sua questão aqui:", "")
74
+
75
+ if user_question:
76
+ # Add human emoji when user asks a question
77
+ st.session_state['history'].append(('👤', user_question))
78
+ st.markdown(f"**👤 {user_question}**")
79
+
80
+ # Generate the response
81
+ bot_response = response(user_question, table_data)
82
+
83
+ # Add robot emoji when generating response and align to the right
84
+ st.session_state['history'].append(('🤖', bot_response))
85
+ st.markdown(f"<div style='text-align: right'>**🤖 {bot_response}**</div>", unsafe_allow_html=True)
86
+
87
+ # Clear history button
88
+ if st.button("Limpar"):
89
+ st.session_state['history'] = []
90
+
91
+ # Display chat history
92
+ for sender, message in st.session_state['history']:
93
+ if sender == '👤':
94
+ st.markdown(f"**👤 {message}**")
95
+ elif sender == '🤖':
96
+ st.markdown(f"<div style='text-align: right'>**🤖 {message}**</div>", unsafe_allow_html=True)
97
+ else:
98
+ st.warning("Carregue um arquivo CSV ou XLSX para começar.")