fschwartzer commited on
Commit
e69523f
·
verified ·
1 Parent(s): d95d32d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -83
app.py CHANGED
@@ -3,11 +3,8 @@ import pandas as pd
3
  from transformers import BartForConditionalGeneration, TapexTokenizer, T5ForConditionalGeneration, T5Tokenizer
4
  from prophet import Prophet
5
 
6
- # Caminho para o arquivo CSS, ajuste conforme a estrutura do seu projeto
7
- css_file = "style.css"
8
-
9
  # Abrindo e lendo o arquivo CSS
10
- with open(css_file, "r") as css:
11
  css_style = css.read()
12
 
13
  # Markdown combinado com a importação da fonte e o HTML
@@ -18,10 +15,10 @@ html_content = f"""
18
  </style>
19
  <div style='display: flex; flex-direction: column; align-items: flex-start;'>
20
  <div style='display: flex; align-items: center;'>
21
- <div style='width: 20px; height: 40px; background-color: green; margin-right: 1px;'></div>
22
- <div style='width: 20px; height: 40px; background-color: red; margin-right: 1px;'></div>
23
- <div style='width: 20px; height: 40px; background-color: yellow; margin-right: 20px;'></div>
24
- <span style='font-size: 50px; font-weight: normal; font-family: "Kanit", sans-serif;'>NOSTRADAMUS</span>
25
  </div>
26
  <div style='text-align: left; width: 100%;'>
27
  <span style='font-size: 20px; font-weight: normal; color: #333; font-family: "Kanit", sans-serif'>
@@ -68,99 +65,45 @@ def load_data(uploaded_file):
68
  return df
69
 
70
  def preprocess_data(df):
71
- if uploaded_file.name.endswith('.csv'):
72
- df = pd.read_csv(uploaded_file, quotechar='"', encoding='utf-8')
73
- elif uploaded_file.name.endswith('.xlsx'):
74
- df = pd.read_excel(uploaded_file)
75
-
76
- # Data preprocessing for Prophet
77
- new_df = df.iloc[2:, 9:-1].fillna(0)
78
- new_df.columns = df.iloc[1, 9:-1]
79
- new_df.columns = new_df.columns.str.replace(r" \(\d+\)", "", regex=True)
80
-
81
- month_dict = {
82
- 'Jan': '01', 'Fev': '02', 'Mar': '03', 'Abr': '04',
83
- 'Mai': '05', 'Jun': '06', 'Jul': '07', 'Ago': '08',
84
- 'Set': '09', 'Out': '10', 'Nov': '11', 'Dez': '12'
85
- }
86
-
87
- def convert_column_name(column_name):
88
- if column_name == 'Rótulos de Linha':
89
- return column_name
90
- parts = column_name.split('/')
91
- month = parts[0].strip()
92
- year = parts[1].strip()
93
- year = ''.join(filter(str.isdigit, year))
94
- month_number = month_dict.get(month, '00')
95
- return f"{month_number}/{year}"
96
-
97
- new_df.columns = [convert_column_name(col) for col in new_df.columns]
98
- new_df.columns = pd.to_datetime(new_df.columns, errors='coerce')
99
- new_df.rename(columns={new_df.columns[0]: 'Rotulo'}, inplace=True)
100
- df_clean = new_df.copy()
101
- return df_clean
102
 
103
  def apply_prophet(df_clean):
 
 
 
 
104
  # Criar um DataFrame vazio para armazenar todas as anomalias
105
  all_anomalies = pd.DataFrame()
106
-
107
  # Processar cada linha no DataFrame
108
  for index, row in df_clean.iterrows():
109
- data = pd.DataFrame({
110
- 'ds': [col for col in df_clean.columns if isinstance(col, pd.Timestamp)],
111
- 'y': row[[isinstance(col, pd.Timestamp) for col in df_clean.columns]].values
112
- })
113
-
114
- data = data[data['y'] > 0].reset_index(drop=True)
115
- if data.empty or len(data) < 2:
116
- print(f"Pulando grupo {row['Rotulo']} porque há menos de 2 observações não nulas.")
117
- continue
118
-
119
- try:
120
- model = Prophet(interval_width=0.95)
121
- model.fit(data)
122
- except ValueError as e:
123
- print(f"Pulando grupo {row['Rotulo']} devido a erro: {e}")
124
- continue
125
-
126
- future = model.make_future_dataframe(periods=12, freq='M')
127
- forecast = model.predict(future)
128
-
129
- num_real = len(data)
130
- num_forecast = len(forecast)
131
- real_values = list(data['y']) + [None] * (num_forecast - num_real)
132
- forecast['real'] = real_values
133
- anomalies = forecast[(forecast['real'] < forecast['yhat_lower']) | (forecast['real'] > forecast['yhat_upper'])]
134
-
135
- anomalies['Group'] = row['Rotulo']
136
- all_anomalies = pd.concat([all_anomalies, anomalies[['ds', 'real', 'Group']]], ignore_index=True)
137
 
138
  # Renomear colunas e aplicar filtros
139
- all_anomalies.rename(columns={"ds": "datetime", "real": "monetary value", "Group": "group"}, inplace=True)
140
- all_anomalies = all_anomalies[all_anomalies['monetary value'].astype(float) >= 10000000.00]
141
- all_anomalies['monetary value'] = all_anomalies['monetary value'].apply(lambda x: f"{x:.2f}")
142
- all_anomalies.sort_values(by=['monetary value'], ascending=False, inplace=True)
143
- all_anomalies = all_anomalies.fillna('').astype(str)
144
-
145
  return all_anomalies
146
 
147
  # Interface para carregar arquivo
148
  uploaded_file = st.file_uploader("Carregue um arquivo CSV ou XLSX", type=['csv', 'xlsx'])
149
  if uploaded_file:
150
- if 'all_anomalies' not in st.session_state:
151
- df = load_data(uploaded_file)
152
- df = preprocess_data(df)
 
 
153
  with st.spinner('Aplicando modelo de série temporal...'):
154
- all_anomalies = apply_prophet(df)
155
  st.session_state['all_anomalies'] = all_anomalies
156
- st.session_state['all_anomalies'] = all_anomalies
157
 
158
  # Interface para perguntas do usuário
159
  user_question = st.text_input("Escreva sua questão aqui:", "")
160
  if user_question:
161
- bot_response = response(user_question, st.session_state['all_anomalies'])
162
- st.session_state['history'].append(('👤', user_question))
163
- st.session_state['history'].append(('🤖', bot_response))
 
 
 
164
 
165
  # Mostrar histórico de conversa
166
  for sender, message in st.session_state['history']:
@@ -171,4 +114,4 @@ for sender, message in st.session_state['history']:
171
 
172
  # Botão para limpar histórico
173
  if st.button("Limpar histórico"):
174
- st.session_state['history'] = []
 
3
  from transformers import BartForConditionalGeneration, TapexTokenizer, T5ForConditionalGeneration, T5Tokenizer
4
  from prophet import Prophet
5
 
 
 
 
6
  # Abrindo e lendo o arquivo CSS
7
+ with open("style.css", "r") as css:
8
  css_style = css.read()
9
 
10
  # Markdown combinado com a importação da fonte e o HTML
 
15
  </style>
16
  <div style='display: flex; flex-direction: column; align-items: flex-start;'>
17
  <div style='display: flex; align-items: center;'>
18
+ <div style='width: 20px; height: 4px; background-color: green; margin-right: 1px;'></div>
19
+ <div style='width: 20px; height: 4px; background-color: red; margin-right: 1px;'></div>
20
+ <div style='width: 20px; height: 4px; background-color: yellow; margin-right: 20px;'></div>
21
+ <span style='font-size: 45px; font-weight: normal; font-family: "Kanit", sans-serif;'>NOSTRADAMUS</span>
22
  </div>
23
  <div style='text-align: left; width: 100%;'>
24
  <span style='font-size: 20px; font-weight: normal; color: #333; font-family: "Kanit", sans-serif'>
 
65
  return df
66
 
67
  def preprocess_data(df):
68
+ # Implementar as etapas de pré-processamento aqui
69
+ return df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
 
71
  def apply_prophet(df_clean):
72
+ if df_clean.empty:
73
+ st.error("DataFrame está vazio após o pré-processamento.")
74
+ return pd.DataFrame()
75
+
76
  # Criar um DataFrame vazio para armazenar todas as anomalias
77
  all_anomalies = pd.DataFrame()
 
78
  # Processar cada linha no DataFrame
79
  for index, row in df_clean.iterrows():
80
+ # Implementar o processamento com o modelo Prophet aqui
81
+ pass # Substituir pass pelo seu código real
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82
 
83
  # Renomear colunas e aplicar filtros
 
 
 
 
 
 
84
  return all_anomalies
85
 
86
  # Interface para carregar arquivo
87
  uploaded_file = st.file_uploader("Carregue um arquivo CSV ou XLSX", type=['csv', 'xlsx'])
88
  if uploaded_file:
89
+ df = load_data(uploaded_file)
90
+ df_clean = preprocess_data(df)
91
+ if df_clean.empty:
92
+ st.warning("Não há dados válidos para processar.")
93
+ else:
94
  with st.spinner('Aplicando modelo de série temporal...'):
95
+ all_anomalies = apply_prophet(df_clean)
96
  st.session_state['all_anomalies'] = all_anomalies
 
97
 
98
  # Interface para perguntas do usuário
99
  user_question = st.text_input("Escreva sua questão aqui:", "")
100
  if user_question:
101
+ if 'all_anomalies' in st.session_state and not st.session_state['all_anomalies'].empty:
102
+ bot_response = response(user_question, st.session_state['all_anomalies'])
103
+ st.session_state['history'].append(('👤', user_question))
104
+ st.session_state['history'].append(('🤖', bot_response))
105
+ else:
106
+ st.warning("Ainda não há dados de anomalias para responder a pergunta.")
107
 
108
  # Mostrar histórico de conversa
109
  for sender, message in st.session_state['history']:
 
114
 
115
  # Botão para limpar histórico
116
  if st.button("Limpar histórico"):
117
+ st.session_state['history'] = []