Spaces:
Running
Running
Felix Marty
commited on
Commit
·
7d58e23
1
Parent(s):
4843fe3
hopefully stable
Browse files- app.py +79 -69
- backend.py +15 -19
- defaults.py +21 -21
app.py
CHANGED
@@ -1,55 +1,66 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
|
3 |
import json
|
4 |
-
from backend import get_message_single, get_message_spam, send_single, send_spam, tokenizer
|
5 |
-
from defaults import (
|
6 |
-
ADDRESS_BETTERTRANSFORMER,
|
7 |
-
ADDRESS_VANILLA,
|
8 |
-
defaults_bt_single,
|
9 |
-
defaults_bt_spam,
|
10 |
-
defaults_vanilla_single,
|
11 |
-
defaults_vanilla_spam,
|
12 |
-
)
|
13 |
|
14 |
import datasets
|
|
|
15 |
import torch
|
16 |
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
result_vanilla = send_single(input_model_single, address_input_vanilla)
|
19 |
-
result_bettertransformer = send_single(
|
20 |
-
|
|
|
|
|
21 |
return result_vanilla, result_bettertransformer
|
22 |
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
sequence_length = int(sequence_length)
|
25 |
input_n_spam_artif = int(input_n_spam_artif)
|
26 |
-
|
27 |
inp_tokens = torch.randint(tokenizer.vocab_size - 1, (sequence_length,)) + 1
|
28 |
|
29 |
n_pads = max(int(padding_ratio * len(inp_tokens)), 1)
|
30 |
-
inp_tokens[-
|
31 |
|
32 |
inp_tokens[0] = 101
|
33 |
-
inp_tokens[-
|
34 |
-
|
35 |
attention_mask = torch.zeros((sequence_length,), dtype=torch.int64)
|
36 |
-
attention_mask[:-
|
37 |
-
|
38 |
-
str_input = json.dumps(
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
44 |
input_dataset = datasets.Dataset.from_dict(
|
45 |
{"sentence": [str_input for _ in range(input_n_spam_artif)]}
|
46 |
)
|
47 |
-
|
48 |
result_vanilla = send_spam(input_dataset, address_input_vanilla)
|
49 |
result_bettertransformer = send_spam(input_dataset, address_input_bettertransformer)
|
50 |
|
51 |
return result_vanilla, result_bettertransformer
|
52 |
|
|
|
53 |
TTILE_IMAGE = """
|
54 |
<div
|
55 |
style="
|
@@ -63,34 +74,17 @@ TTILE_IMAGE = """
|
|
63 |
</div>
|
64 |
"""
|
65 |
|
66 |
-
TITLE = """
|
67 |
-
<div
|
68 |
-
style="
|
69 |
-
display: inline-flex;
|
70 |
-
align-items: center;
|
71 |
-
text-align: center;
|
72 |
-
max-width: 1400px;
|
73 |
-
gap: 0.8rem;
|
74 |
-
font-size: 2.2rem;
|
75 |
-
"
|
76 |
-
>
|
77 |
-
<h1 style="font-weight: 500; margin-bottom: 10px; margin-top: 10px;">
|
78 |
-
Speed up your inference and support more workload with PyTorch's BetterTransformer 🤗
|
79 |
-
</h1>
|
80 |
-
</div>
|
81 |
-
"""
|
82 |
-
|
83 |
with gr.Blocks() as demo:
|
84 |
gr.HTML(TTILE_IMAGE)
|
85 |
-
gr.
|
|
|
|
|
86 |
|
87 |
gr.Markdown(
|
88 |
"""
|
89 |
-
Let's try out
|
90 |
-
|
91 |
-
BetterTransformer is a stable feature made available with [PyTorch 1.13](https://pytorch.org/blog/PyTorch-1.13-release/) allowing to use a fastpath execution for encoder attention blocks.
|
92 |
|
93 |
-
As a one-liner, you can convert your 🤗 Transformers models to use BetterTransformer thanks to the [🤗 Optimum](https://
|
94 |
|
95 |
```
|
96 |
from optimum.bettertransformer import BetterTransformer
|
@@ -98,18 +92,13 @@ with gr.Blocks() as demo:
|
|
98 |
better_model = BetterTransformer.transform(model)
|
99 |
```
|
100 |
|
101 |
-
This Space is a demo of an **end-to-end** deployement of PyTorch eager-mode models, both with and without BetterTransformer. The goal is to see what are the benefits server-side and client-side of using BetterTransformer.
|
102 |
-
|
103 |
-
|
104 |
-
"""
|
105 |
)
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
gr.Markdown("### Vanilla Transformers + TorchServe")
|
110 |
-
with gr.Column(scale=50):
|
111 |
-
gr.Markdown("### BetterTransformer + TorchServe")
|
112 |
-
|
113 |
address_input_vanilla = gr.Textbox(
|
114 |
max_lines=1, label="ip vanilla", value=ADDRESS_VANILLA, visible=False
|
115 |
)
|
@@ -124,30 +113,44 @@ with gr.Blocks() as demo:
|
|
124 |
input_model_single = gr.Textbox(
|
125 |
max_lines=1,
|
126 |
label="Text",
|
127 |
-
value="Expectations were low, enjoyment was high",
|
128 |
)
|
129 |
|
130 |
btn_single = gr.Button("Send single text request")
|
131 |
with gr.Row():
|
132 |
with gr.Column(scale=50):
|
|
|
133 |
output_single_vanilla = gr.Markdown(
|
134 |
label="Output single vanilla",
|
135 |
value=get_message_single(**defaults_vanilla_single),
|
136 |
)
|
137 |
with gr.Column(scale=50):
|
|
|
138 |
output_single_bt = gr.Markdown(
|
139 |
label="Output single bt", value=get_message_single(**defaults_bt_single)
|
140 |
)
|
141 |
|
142 |
btn_single.click(
|
143 |
fn=dispatch_single,
|
144 |
-
inputs=[
|
|
|
|
|
|
|
|
|
145 |
outputs=[output_single_vanilla, output_single_bt],
|
146 |
)
|
147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
input_n_spam_artif = gr.Number(
|
149 |
label="Number of inputs to send",
|
150 |
-
value=
|
151 |
)
|
152 |
sequence_length = gr.Number(
|
153 |
label="Sequence length (in tokens)",
|
@@ -155,28 +158,35 @@ with gr.Blocks() as demo:
|
|
155 |
)
|
156 |
padding_ratio = gr.Number(
|
157 |
label="Padding ratio",
|
158 |
-
value=0.
|
159 |
-
)
|
160 |
-
btn_spam_artif = gr.Button(
|
161 |
-
"Spam text requests (using artificial data)"
|
162 |
)
|
|
|
|
|
163 |
with gr.Row():
|
164 |
with gr.Column(scale=50):
|
|
|
165 |
output_spam_vanilla_artif = gr.Markdown(
|
166 |
label="Output spam vanilla",
|
167 |
value=get_message_spam(**defaults_vanilla_spam),
|
168 |
)
|
169 |
with gr.Column(scale=50):
|
|
|
170 |
output_spam_bt_artif = gr.Markdown(
|
171 |
label="Output spam bt", value=get_message_spam(**defaults_bt_spam)
|
172 |
)
|
173 |
|
174 |
btn_spam_artif.click(
|
175 |
fn=dispatch_spam_artif,
|
176 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
outputs=[output_spam_vanilla_artif, output_spam_bt_artif],
|
178 |
)
|
179 |
|
180 |
|
181 |
demo.queue(concurrency_count=1)
|
182 |
-
demo.launch()
|
|
|
|
|
|
|
1 |
import json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
import datasets
|
4 |
+
import gradio as gr
|
5 |
import torch
|
6 |
|
7 |
+
from backend import (get_message_single, get_message_spam, send_single,
|
8 |
+
send_spam, tokenizer)
|
9 |
+
from defaults import (ADDRESS_BETTERTRANSFORMER, ADDRESS_VANILLA,
|
10 |
+
defaults_bt_single, defaults_bt_spam,
|
11 |
+
defaults_vanilla_single, defaults_vanilla_spam)
|
12 |
+
|
13 |
+
|
14 |
+
def dispatch_single(
|
15 |
+
input_model_single, address_input_vanilla, address_input_bettertransformer
|
16 |
+
):
|
17 |
result_vanilla = send_single(input_model_single, address_input_vanilla)
|
18 |
+
result_bettertransformer = send_single(
|
19 |
+
input_model_single, address_input_bettertransformer
|
20 |
+
)
|
21 |
+
|
22 |
return result_vanilla, result_bettertransformer
|
23 |
|
24 |
+
|
25 |
+
def dispatch_spam_artif(
|
26 |
+
input_n_spam_artif,
|
27 |
+
sequence_length,
|
28 |
+
padding_ratio,
|
29 |
+
address_input_vanilla,
|
30 |
+
address_input_bettertransformer,
|
31 |
+
):
|
32 |
sequence_length = int(sequence_length)
|
33 |
input_n_spam_artif = int(input_n_spam_artif)
|
34 |
+
|
35 |
inp_tokens = torch.randint(tokenizer.vocab_size - 1, (sequence_length,)) + 1
|
36 |
|
37 |
n_pads = max(int(padding_ratio * len(inp_tokens)), 1)
|
38 |
+
inp_tokens[-n_pads:] = 0
|
39 |
|
40 |
inp_tokens[0] = 101
|
41 |
+
inp_tokens[-n_pads - 1] = 102
|
42 |
+
|
43 |
attention_mask = torch.zeros((sequence_length,), dtype=torch.int64)
|
44 |
+
attention_mask[:-n_pads] = 1
|
45 |
+
|
46 |
+
str_input = json.dumps(
|
47 |
+
{
|
48 |
+
"input_ids": inp_tokens.cpu().tolist(),
|
49 |
+
"attention_mask": attention_mask.cpu().tolist(),
|
50 |
+
"pre_tokenized": True,
|
51 |
+
}
|
52 |
+
)
|
53 |
+
|
54 |
input_dataset = datasets.Dataset.from_dict(
|
55 |
{"sentence": [str_input for _ in range(input_n_spam_artif)]}
|
56 |
)
|
57 |
+
|
58 |
result_vanilla = send_spam(input_dataset, address_input_vanilla)
|
59 |
result_bettertransformer = send_spam(input_dataset, address_input_bettertransformer)
|
60 |
|
61 |
return result_vanilla, result_bettertransformer
|
62 |
|
63 |
+
|
64 |
TTILE_IMAGE = """
|
65 |
<div
|
66 |
style="
|
|
|
74 |
</div>
|
75 |
"""
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
with gr.Blocks() as demo:
|
78 |
gr.HTML(TTILE_IMAGE)
|
79 |
+
gr.Markdown(
|
80 |
+
"# Speed up your inference and support more workload with PyTorch's BetterTransformer 🤗"
|
81 |
+
)
|
82 |
|
83 |
gr.Markdown(
|
84 |
"""
|
85 |
+
Let's try out [BetterTransformer](https://pytorch.org/blog/a-better-transformer-for-fast-transformer-encoder-inference/) + [TorchServe](https://pytorch.org/serve/)!
|
|
|
|
|
86 |
|
87 |
+
BetterTransformer is a stable feature made available with [PyTorch 1.13](https://pytorch.org/blog/PyTorch-1.13-release/) allowing to use a fastpath execution for encoder attention blocks. Depending on your hardware, batch size, sequence length, padding ratio, it can bring large speedups at inference **at no cost in prediction quality**. As a one-liner, you can convert your 🤗 Transformers models to use BetterTransformer thanks to the integration in the [🤗 Optimum](https://github.com/huggingface/optimum) library:
|
88 |
|
89 |
```
|
90 |
from optimum.bettertransformer import BetterTransformer
|
|
|
92 |
better_model = BetterTransformer.transform(model)
|
93 |
```
|
94 |
|
95 |
+
This Space is a demo of an **end-to-end** deployement of PyTorch eager-mode models, both with and without BetterTransformer. The goal is to see what are the benefits server-side and client-side of using BetterTransformer. The model used is [`distilbert-base-uncased-finetuned-sst-2-english`](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english), and TorchServe is parametrized to use a maximum batch size of 8. **Beware:** you may be queued in case several persons use the Space at the same time.
|
96 |
+
|
97 |
+
For more details on the TorchServe implementation and to reproduce, see [this reference code](https://github.com/fxmarty/bettertransformer_demo). For more details on BetterTransformer, check out the [blog post on PyTorch's Medium](https://medium.com/pytorch/bettertransformer-out-of-the-box-performance-for-huggingface-transformers-3fbe27d50ab2), and [the Optimum documentation](https://huggingface.co/docs/optimum/bettertransformer/overview)!"""
|
|
|
98 |
)
|
99 |
|
100 |
+
gr.Markdown("## Single input scenario")
|
101 |
+
|
|
|
|
|
|
|
|
|
102 |
address_input_vanilla = gr.Textbox(
|
103 |
max_lines=1, label="ip vanilla", value=ADDRESS_VANILLA, visible=False
|
104 |
)
|
|
|
113 |
input_model_single = gr.Textbox(
|
114 |
max_lines=1,
|
115 |
label="Text",
|
116 |
+
value="Expectations were low, enjoyment was high. Although the music was not top level, the story was well-paced.",
|
117 |
)
|
118 |
|
119 |
btn_single = gr.Button("Send single text request")
|
120 |
with gr.Row():
|
121 |
with gr.Column(scale=50):
|
122 |
+
gr.Markdown("### Vanilla Transformers + TorchServe")
|
123 |
output_single_vanilla = gr.Markdown(
|
124 |
label="Output single vanilla",
|
125 |
value=get_message_single(**defaults_vanilla_single),
|
126 |
)
|
127 |
with gr.Column(scale=50):
|
128 |
+
gr.Markdown("### BetterTransformer + TorchServe")
|
129 |
output_single_bt = gr.Markdown(
|
130 |
label="Output single bt", value=get_message_single(**defaults_bt_single)
|
131 |
)
|
132 |
|
133 |
btn_single.click(
|
134 |
fn=dispatch_single,
|
135 |
+
inputs=[
|
136 |
+
input_model_single,
|
137 |
+
address_input_vanilla,
|
138 |
+
address_input_bettertransformer,
|
139 |
+
],
|
140 |
outputs=[output_single_vanilla, output_single_bt],
|
141 |
)
|
142 |
|
143 |
+
gr.Markdown(
|
144 |
+
"""
|
145 |
+
**Beware that the end-to-end latency can be impacted by a different ping time between the two servers.**
|
146 |
+
|
147 |
+
## Heavy workload scenario
|
148 |
+
"""
|
149 |
+
)
|
150 |
+
|
151 |
input_n_spam_artif = gr.Number(
|
152 |
label="Number of inputs to send",
|
153 |
+
value=80,
|
154 |
)
|
155 |
sequence_length = gr.Number(
|
156 |
label="Sequence length (in tokens)",
|
|
|
158 |
)
|
159 |
padding_ratio = gr.Number(
|
160 |
label="Padding ratio",
|
161 |
+
value=0.7,
|
|
|
|
|
|
|
162 |
)
|
163 |
+
btn_spam_artif = gr.Button("Spam text requests (using artificial data)")
|
164 |
+
|
165 |
with gr.Row():
|
166 |
with gr.Column(scale=50):
|
167 |
+
gr.Markdown("### Vanilla Transformers + TorchServe")
|
168 |
output_spam_vanilla_artif = gr.Markdown(
|
169 |
label="Output spam vanilla",
|
170 |
value=get_message_spam(**defaults_vanilla_spam),
|
171 |
)
|
172 |
with gr.Column(scale=50):
|
173 |
+
gr.Markdown("### BetterTransformer + TorchServe")
|
174 |
output_spam_bt_artif = gr.Markdown(
|
175 |
label="Output spam bt", value=get_message_spam(**defaults_bt_spam)
|
176 |
)
|
177 |
|
178 |
btn_spam_artif.click(
|
179 |
fn=dispatch_spam_artif,
|
180 |
+
inputs=[
|
181 |
+
input_n_spam_artif,
|
182 |
+
sequence_length,
|
183 |
+
padding_ratio,
|
184 |
+
address_input_vanilla,
|
185 |
+
address_input_bettertransformer,
|
186 |
+
],
|
187 |
outputs=[output_spam_vanilla_artif, output_spam_bt_artif],
|
188 |
)
|
189 |
|
190 |
|
191 |
demo.queue(concurrency_count=1)
|
192 |
+
demo.launch()
|
backend.py
CHANGED
@@ -1,16 +1,12 @@
|
|
1 |
import json
|
|
|
2 |
|
3 |
-
from
|
4 |
-
ADDRESS_BETTERTRANSFORMER,
|
5 |
-
ADDRESS_VANILLA,
|
6 |
-
HEADERS,
|
7 |
-
MODEL_NAME,
|
8 |
-
)
|
9 |
from requests_futures.sessions import FuturesSession
|
10 |
-
|
11 |
from transformers import AutoTokenizer
|
12 |
|
13 |
-
import
|
|
|
14 |
|
15 |
RETURN_MESSAGE_SINGLE = """
|
16 |
Inference statistics:
|
@@ -23,10 +19,8 @@ Inference statistics:
|
|
23 |
* Padding ratio: 0.0 %
|
24 |
"""
|
25 |
|
26 |
-
RETURN_MESSAGE_SPAM =
|
27 |
-
|
28 |
-
Processing """
|
29 |
-
+ "NUMBER REQ" + """ inputs sent asynchronously. Grab a coffee.
|
30 |
|
31 |
Inference statistics:
|
32 |
|
@@ -37,10 +31,10 @@ Inference statistics:
|
|
37 |
* Mean sequence length: {4} tokens
|
38 |
* Effective mean batch size: {5}
|
39 |
"""
|
40 |
-
)
|
41 |
|
42 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
43 |
|
|
|
44 |
def get_message_single(
|
45 |
status, prediction, inf_latency, peak_gpu_memory, end_to_end_latency, **kwargs
|
46 |
):
|
@@ -70,14 +64,16 @@ def get_message_spam(
|
|
70 |
|
71 |
SESSION = FuturesSession()
|
72 |
|
73 |
-
|
|
|
74 |
assert address in [ADDRESS_VANILLA, ADDRESS_BETTERTRANSFORMER]
|
75 |
|
76 |
# should not take more than 10 s, so timeout if that's the case
|
77 |
-
|
78 |
-
|
79 |
-
address, headers=HEADERS, data=input_model_vanilla.encode("utf-8"), timeout=10
|
80 |
)
|
|
|
|
|
81 |
|
82 |
try:
|
83 |
response = promise.result() # resolve ASAP
|
@@ -98,7 +94,7 @@ def send_single(input_model_vanilla, address: str):
|
|
98 |
)
|
99 |
|
100 |
|
101 |
-
def send_spam(inp, address: str):
|
102 |
assert address in [ADDRESS_VANILLA, ADDRESS_BETTERTRANSFORMER]
|
103 |
|
104 |
mean_inference_latency = 0
|
@@ -129,7 +125,7 @@ def send_spam(inp, address: str):
|
|
129 |
response = promise.result() # resolve ASAP
|
130 |
except Exception as e:
|
131 |
return f"{e}"
|
132 |
-
|
133 |
end = max(time.time(), end)
|
134 |
|
135 |
# then other metrics
|
|
|
1 |
import json
|
2 |
+
import time
|
3 |
|
4 |
+
from datasets import Dataset
|
|
|
|
|
|
|
|
|
|
|
5 |
from requests_futures.sessions import FuturesSession
|
|
|
6 |
from transformers import AutoTokenizer
|
7 |
|
8 |
+
from defaults import (ADDRESS_BETTERTRANSFORMER, ADDRESS_VANILLA, HEADERS,
|
9 |
+
MODEL_NAME)
|
10 |
|
11 |
RETURN_MESSAGE_SINGLE = """
|
12 |
Inference statistics:
|
|
|
19 |
* Padding ratio: 0.0 %
|
20 |
"""
|
21 |
|
22 |
+
RETURN_MESSAGE_SPAM = """
|
23 |
+
Processing inputs sent asynchronously. Grab a coffee.
|
|
|
|
|
24 |
|
25 |
Inference statistics:
|
26 |
|
|
|
31 |
* Mean sequence length: {4} tokens
|
32 |
* Effective mean batch size: {5}
|
33 |
"""
|
|
|
34 |
|
35 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
36 |
|
37 |
+
|
38 |
def get_message_single(
|
39 |
status, prediction, inf_latency, peak_gpu_memory, end_to_end_latency, **kwargs
|
40 |
):
|
|
|
64 |
|
65 |
SESSION = FuturesSession()
|
66 |
|
67 |
+
|
68 |
+
def send_single(input_model_vanilla: str, address: str):
|
69 |
assert address in [ADDRESS_VANILLA, ADDRESS_BETTERTRANSFORMER]
|
70 |
|
71 |
# should not take more than 10 s, so timeout if that's the case
|
72 |
+
inp = json.dumps({"text": input_model_vanilla, "pre_tokenized": False}).encode(
|
73 |
+
"utf-8"
|
|
|
74 |
)
|
75 |
+
start = time.time()
|
76 |
+
promise = SESSION.post(address, headers=HEADERS, data=inp, timeout=10)
|
77 |
|
78 |
try:
|
79 |
response = promise.result() # resolve ASAP
|
|
|
94 |
)
|
95 |
|
96 |
|
97 |
+
def send_spam(inp: Dataset, address: str):
|
98 |
assert address in [ADDRESS_VANILLA, ADDRESS_BETTERTRANSFORMER]
|
99 |
|
100 |
mean_inference_latency = 0
|
|
|
125 |
response = promise.result() # resolve ASAP
|
126 |
except Exception as e:
|
127 |
return f"{e}"
|
128 |
+
|
129 |
end = max(time.time(), end)
|
130 |
|
131 |
# then other metrics
|
defaults.py
CHANGED
@@ -1,35 +1,35 @@
|
|
1 |
defaults_vanilla_single = {
|
2 |
"status": 200,
|
3 |
-
"prediction": "
|
4 |
-
"inf_latency":
|
5 |
-
"peak_gpu_memory":
|
6 |
-
"end_to_end_latency":
|
7 |
}
|
8 |
|
9 |
defaults_bt_single = {
|
10 |
"status": 200,
|
11 |
-
"prediction": "
|
12 |
-
"inf_latency":
|
13 |
-
"peak_gpu_memory":
|
14 |
-
"end_to_end_latency":
|
15 |
}
|
16 |
|
17 |
defaults_vanilla_spam = {
|
18 |
-
"throughput":
|
19 |
-
"mean_inference_latency":
|
20 |
-
"mean_peak_gpu_memory":
|
21 |
-
"mean_padding_ratio":
|
22 |
-
"mean_sequence_length":
|
23 |
-
"effective_batch_size":
|
24 |
}
|
25 |
|
26 |
defaults_bt_spam = {
|
27 |
-
"throughput":
|
28 |
-
"mean_inference_latency":
|
29 |
-
"mean_peak_gpu_memory":
|
30 |
-
"mean_padding_ratio":
|
31 |
-
"mean_sequence_length":
|
32 |
-
"effective_batch_size":
|
33 |
}
|
34 |
|
35 |
BATCH_SIZE = 8 # fixed!
|
@@ -37,4 +37,4 @@ BATCH_SIZE = 8 # fixed!
|
|
37 |
HEADERS = {"Content-Type": "text/plain"}
|
38 |
ADDRESS_VANILLA = "http://3.83.142.46:8080/predictions/my_tc"
|
39 |
ADDRESS_BETTERTRANSFORMER = "http://3.95.136.2:8080/predictions/my_tc"
|
40 |
-
MODEL_NAME = "distilbert-base-uncased-finetuned-sst-2-english"
|
|
|
1 |
defaults_vanilla_single = {
|
2 |
"status": 200,
|
3 |
+
"prediction": "Positive",
|
4 |
+
"inf_latency": 7.66,
|
5 |
+
"peak_gpu_memory": 2706.21,
|
6 |
+
"end_to_end_latency": 309.65,
|
7 |
}
|
8 |
|
9 |
defaults_bt_single = {
|
10 |
"status": 200,
|
11 |
+
"prediction": "Positive",
|
12 |
+
"inf_latency": 6.01,
|
13 |
+
"peak_gpu_memory": 2706.22,
|
14 |
+
"end_to_end_latency": 303.53,
|
15 |
}
|
16 |
|
17 |
defaults_vanilla_spam = {
|
18 |
+
"throughput": 28.04,
|
19 |
+
"mean_inference_latency": 24.43,
|
20 |
+
"mean_peak_gpu_memory": 2907.92,
|
21 |
+
"mean_padding_ratio": 69.53,
|
22 |
+
"mean_sequence_length": 128.0,
|
23 |
+
"effective_batch_size": 4.3,
|
24 |
}
|
25 |
|
26 |
defaults_bt_spam = {
|
27 |
+
"throughput": 38.53,
|
28 |
+
"mean_inference_latency": 12.73,
|
29 |
+
"mean_peak_gpu_memory": 2761.64,
|
30 |
+
"mean_padding_ratio": 69.53,
|
31 |
+
"mean_sequence_length": 128.0,
|
32 |
+
"effective_batch_size": 4.7,
|
33 |
}
|
34 |
|
35 |
BATCH_SIZE = 8 # fixed!
|
|
|
37 |
HEADERS = {"Content-Type": "text/plain"}
|
38 |
ADDRESS_VANILLA = "http://3.83.142.46:8080/predictions/my_tc"
|
39 |
ADDRESS_BETTERTRANSFORMER = "http://3.95.136.2:8080/predictions/my_tc"
|
40 |
+
MODEL_NAME = "distilbert-base-uncased-finetuned-sst-2-english"
|