Spaces:
Running
Running
Francisco Zanartu
commited on
Commit
·
0267b0d
1
Parent(s):
7f1f7ae
add palm methods
Browse files- app.py +2 -1
- context/palm.py +149 -0
app.py
CHANGED
@@ -6,6 +6,7 @@ Module for detecting fallacies in text.
|
|
6 |
import os
|
7 |
import gradio as gr
|
8 |
from utils.core import HamburgerStyle
|
|
|
9 |
|
10 |
rebuttal = HamburgerStyle()
|
11 |
|
@@ -29,7 +30,7 @@ gpt4 = gr.Interface(
|
|
29 |
description="Single, comprehensive prompt which assigns GPT-4 the role of a climate change analyst as an expert persona to debunk misinformation",
|
30 |
)
|
31 |
palm = gr.Interface(
|
32 |
-
fn=
|
33 |
inputs=gr.Textbox(
|
34 |
label="input myth", lines=4, placeholder="climate change misinformation"
|
35 |
),
|
|
|
6 |
import os
|
7 |
import gradio as gr
|
8 |
from utils.core import HamburgerStyle
|
9 |
+
from context.palm import rebuttal_generator
|
10 |
|
11 |
rebuttal = HamburgerStyle()
|
12 |
|
|
|
30 |
description="Single, comprehensive prompt which assigns GPT-4 the role of a climate change analyst as an expert persona to debunk misinformation",
|
31 |
)
|
32 |
palm = gr.Interface(
|
33 |
+
fn=rebuttal_generator,
|
34 |
inputs=gr.Textbox(
|
35 |
label="input myth", lines=4, placeholder="climate change misinformation"
|
36 |
),
|
context/palm.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Module for detecting fallacies in text.
|
3 |
+
|
4 |
+
Functions:
|
5 |
+
- rebuttal_generator: Detects fallacies in a text input by utilizing models for fallacy
|
6 |
+
detection and semantic textual similarity and generates a rebuttal for the fallacious claim.
|
7 |
+
- query: Sends a query to a specified API endpoint with the provided payload and returns
|
8 |
+
the response.
|
9 |
+
- demo: Launches a Gradio interface for interactively detecting fallacies in text.
|
10 |
+
|
11 |
+
Dependencies:
|
12 |
+
- os: Provides a portable way of using operating system dependent functionality.
|
13 |
+
- json: Provides functions for encoding and decoding JSON data.
|
14 |
+
- requests: Allows sending HTTP requests easily.
|
15 |
+
- gradio: Facilitates the creation of customizable UI components for machine learning models.
|
16 |
+
- langchain_google_genai: Wrapper for Google Generative AI language models.
|
17 |
+
- auxiliar: Contains auxiliary data used in the fallacy detection process.
|
18 |
+
|
19 |
+
Environment Variables:
|
20 |
+
- HF_API_KEY: API key for accessing Hugging Face model APIs.
|
21 |
+
- GOOGLE_API_KEY: API key for accessing Google APIs.
|
22 |
+
|
23 |
+
Constants:
|
24 |
+
- FLICC_MODEL: API endpoint for the FLICC model used for fallacy detection.
|
25 |
+
- CARDS_MODEL: API endpoint for the CARDS model used for fallacy detection.
|
26 |
+
- SEMANTIC_TEXTUAL_SIMILARITY: API endpoint for the model used for semantic textual similarity.
|
27 |
+
|
28 |
+
Global Variables:
|
29 |
+
- hf_api_key: API key for accessing Hugging Face model APIs.
|
30 |
+
- google_key: API key for accessing Google APIs.
|
31 |
+
- safety_settings: Settings for safety measures in the Google Generative AI model.
|
32 |
+
- llm: Instance of the GoogleGenerativeAI class for text generation.
|
33 |
+
- similarity_template: Template for generating prompts for similarity comparison.
|
34 |
+
- FALLACY_CLAIMS: Dictionary containing fallacy labels and corresponding claims.
|
35 |
+
- DEBUNKINGS: Dictionary containing debunkings for fallacy claims.
|
36 |
+
- DEFINITIONS: Dictionary containing definitions for fallacy labels.
|
37 |
+
"""
|
38 |
+
|
39 |
+
import os
|
40 |
+
import json
|
41 |
+
import requests
|
42 |
+
from langchain_google_genai import GoogleGenerativeAI
|
43 |
+
from langchain.prompts import PromptTemplate
|
44 |
+
from langchain.chains import LLMChain
|
45 |
+
from auxiliar import (
|
46 |
+
FALLACY_CLAIMS,
|
47 |
+
DEBUNKINGS,
|
48 |
+
DEFINITIONS,
|
49 |
+
SIMILARITY_TEMPLATE,
|
50 |
+
)
|
51 |
+
|
52 |
+
hf_api_key = os.environ["HF_API_KEY"]
|
53 |
+
google_key = os.environ["GOOGLE_API_KEY"]
|
54 |
+
|
55 |
+
llm = GoogleGenerativeAI(
|
56 |
+
model="models/text-bison-001",
|
57 |
+
google_api_key=google_key,
|
58 |
+
temperature=0,
|
59 |
+
# safety_settings=safety_settings,
|
60 |
+
)
|
61 |
+
|
62 |
+
similarity_template = PromptTemplate.from_template(SIMILARITY_TEMPLATE)
|
63 |
+
|
64 |
+
|
65 |
+
def query(payload, api_url, api_token=hf_api_key):
|
66 |
+
"""
|
67 |
+
Sends a query to the specified API endpoint with the provided payload.
|
68 |
+
|
69 |
+
Args:
|
70 |
+
payload (dict): The payload to be sent to the API.
|
71 |
+
api_url (str): The URL of the API endpoint.
|
72 |
+
api_token (str, optional): The API token used for authentication. Defaults to hf_api_key.
|
73 |
+
|
74 |
+
Returns:
|
75 |
+
dict: The JSON response from the API.
|
76 |
+
|
77 |
+
Raises:
|
78 |
+
ValueError: If the response content cannot be decoded as UTF-8.
|
79 |
+
|
80 |
+
Example:
|
81 |
+
>>> query({"text": "example text"}, "https://api.example.com")
|
82 |
+
{'status': 'success', 'result': 'example result'}
|
83 |
+
"""
|
84 |
+
headers = {"Authorization": f"Bearer {api_token}"}
|
85 |
+
options = {"use_cache": False, "wait_for_model": True}
|
86 |
+
payload = {"inputs": payload, "options": options}
|
87 |
+
response = requests.post(api_url, headers=headers, json=payload)
|
88 |
+
return json.loads(response.content.decode("utf-8"))
|
89 |
+
|
90 |
+
|
91 |
+
FLICC_MODEL = "https://api-inference.huggingface.co/models/fzanartu/flicc"
|
92 |
+
CARDS_MODEL = (
|
93 |
+
"https://api-inference.huggingface.co/models/crarojasca/BinaryAugmentedCARDS"
|
94 |
+
)
|
95 |
+
SEMANTIC_TEXTUAL_SIMILARITY = (
|
96 |
+
"https://api-inference.huggingface.co/models/sentence-transformers/all-MiniLM-L6-v2"
|
97 |
+
)
|
98 |
+
|
99 |
+
|
100 |
+
def rebuttal_generator(text):
|
101 |
+
"""
|
102 |
+
Generates a rebuttal for a text containing a detected fallacy.
|
103 |
+
|
104 |
+
This function detects fallacies in the input text and generates a rebuttal
|
105 |
+
for the fallacious claim.
|
106 |
+
|
107 |
+
Args:
|
108 |
+
text (str): The input text containing a potentially fallacious claim.
|
109 |
+
|
110 |
+
Returns:
|
111 |
+
str: A rebuttal for the fallacious claim in the input text.
|
112 |
+
|
113 |
+
Raises:
|
114 |
+
ValueError: If no similar sentence is found.
|
115 |
+
|
116 |
+
Example:
|
117 |
+
>>> rebuttal_generator("This is a text containing a fallacy.")
|
118 |
+
'A rebuttal to the fallacy of [fallacy label]: [rebuttal]'
|
119 |
+
"""
|
120 |
+
|
121 |
+
response = query(text, api_url=CARDS_MODEL)
|
122 |
+
if response[0][0].get("label") == "Contrarian":
|
123 |
+
response = query(text, api_url=FLICC_MODEL)
|
124 |
+
label = response[0][0].get("label")
|
125 |
+
claims = FALLACY_CLAIMS.get(label, None)
|
126 |
+
|
127 |
+
if claims:
|
128 |
+
data = query(
|
129 |
+
{"source_sentence": text, "sentences": claims},
|
130 |
+
api_url=SEMANTIC_TEXTUAL_SIMILARITY,
|
131 |
+
)
|
132 |
+
max_similarity = data.index(max(data))
|
133 |
+
chain = LLMChain(llm=llm, prompt=similarity_template, verbose=True)
|
134 |
+
result = chain.run(
|
135 |
+
{
|
136 |
+
"claim": claims[max_similarity],
|
137 |
+
"fallacy": label,
|
138 |
+
"definition": DEFINITIONS.get(label),
|
139 |
+
"example": DEBUNKINGS.get(claims[max_similarity]),
|
140 |
+
"text": text,
|
141 |
+
}
|
142 |
+
)
|
143 |
+
|
144 |
+
else:
|
145 |
+
raise ValueError("No similar sentence found")
|
146 |
+
else:
|
147 |
+
result = "No fallacy has been detected in your text."
|
148 |
+
|
149 |
+
return result
|