Spaces:
Sleeping
Sleeping
Source code sepsis FastAPI
Browse files- RESTFul API
- GraphQL
- Dockerfile +25 -0
- assets/favicon.ico +0 -0
- config.py +75 -0
- graph_ql.py +151 -0
- main.py +9 -0
- requirements.txt +198 -0
- rest.py +201 -0
- utils/pipeline_helper.py +23 -0
Dockerfile
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.11.9-slim
|
2 |
+
|
3 |
+
# Copy requirements file
|
4 |
+
COPY requirements.txt .
|
5 |
+
|
6 |
+
# Update pip
|
7 |
+
RUN pip --timeout=3000 install --no-cache-dir --upgrade pip
|
8 |
+
|
9 |
+
# Install dependecies
|
10 |
+
RUN pip --timeout=3000 install --no-cache-dir -r requirements.txt
|
11 |
+
|
12 |
+
# Make project directory
|
13 |
+
RUN mkdir -p /src/api/
|
14 |
+
|
15 |
+
# Set working directory
|
16 |
+
WORKDIR /src/api
|
17 |
+
|
18 |
+
# Copy API
|
19 |
+
COPY . .
|
20 |
+
|
21 |
+
# Expose app port
|
22 |
+
EXPOSE 7860
|
23 |
+
|
24 |
+
# Start application
|
25 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
assets/favicon.ico
ADDED
config.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
|
3 |
+
# ENV when using standalone uvicorn server running FastAPI in api directory
|
4 |
+
ENV_PATH = Path('../../env/online.env')
|
5 |
+
|
6 |
+
ONE_DAY_SEC = 24*60*60
|
7 |
+
|
8 |
+
ONE_WEEK_SEC = ONE_DAY_SEC*7
|
9 |
+
|
10 |
+
PIPELINE_FUNCTION_URL = "https://raw.githubusercontent.com/D0nG4667/sepsis_prediction_full_stack/main/dev/models/pipeline_func/pipeline_functions.joblib"
|
11 |
+
|
12 |
+
RANDOM_FOREST_URL = "https://raw.githubusercontent.com/D0nG4667/sepsis_prediction_full_stack/main/dev/models/RandomForestClassifier.joblib"
|
13 |
+
|
14 |
+
XGBOOST_URL = "https://raw.githubusercontent.com/D0nG4667/sepsis_prediction_full_stack/main/dev/models/XGBClassifier.joblib"
|
15 |
+
|
16 |
+
ADABOOST_URL = "https://raw.githubusercontent.com/D0nG4667/sepsis_prediction_full_stack/main/dev/models/AdaBoostClassifier.joblib"
|
17 |
+
|
18 |
+
CATBOOST_URL = "https://raw.githubusercontent.com/D0nG4667/sepsis_prediction_full_stack/main/dev/models/CatBoostClassifier.joblib"
|
19 |
+
|
20 |
+
DECISION_TREE_URL = "https://raw.githubusercontent.com/D0nG4667/sepsis_prediction_full_stack/main/dev/models/DecisionTreeClassifier.joblib"
|
21 |
+
|
22 |
+
KNN_URL = "https://raw.githubusercontent.com/D0nG4667/sepsis_prediction_full_stack/main/dev/models/KNeighborsClassifier.joblib"
|
23 |
+
|
24 |
+
LGBM_URL = "https://raw.githubusercontent.com/D0nG4667/sepsis_prediction_full_stack/main/dev/models/LGBMClassifier.joblib"
|
25 |
+
|
26 |
+
LOG_REG_URL = "https://raw.githubusercontent.com/D0nG4667/sepsis_prediction_full_stack/main/dev/models/LogisticRegression.joblib"
|
27 |
+
|
28 |
+
SVC_URL = "https://raw.githubusercontent.com/D0nG4667/sepsis_prediction_full_stack/main/dev/models/SVC.joblib"
|
29 |
+
|
30 |
+
ENCODER_URL = "https://raw.githubusercontent.com/D0nG4667/sepsis_prediction_full_stack/main/dev/models/enc/encoder.joblib"
|
31 |
+
|
32 |
+
ALL_MODELS = {
|
33 |
+
"AdaBoostClassifier": ADABOOST_URL,
|
34 |
+
"CatBoostClassifier": CATBOOST_URL,
|
35 |
+
"DecisionTreeClassifier": DECISION_TREE_URL,
|
36 |
+
"KNeighborsClassifier": KNN_URL,
|
37 |
+
"LGBMClassifier": LGBM_URL,
|
38 |
+
"LogisticRegression": LOG_REG_URL,
|
39 |
+
"RandomForestClassifier": RANDOM_FOREST_URL,
|
40 |
+
"SupportVectorClassifier": SVC_URL,
|
41 |
+
"XGBoostClassifier": XGBOOST_URL
|
42 |
+
}
|
43 |
+
|
44 |
+
DESCRIPTION = """
|
45 |
+
This API identifies ICU patients at risk of developing sepsis using `9 models` of which `Random Forest Classifier` and `XGBoost Classifier` are the best.\n
|
46 |
+
|
47 |
+
The models were trained on [The John Hopkins University datasets at Kaggle](https://www.kaggle.com/datasets/chaunguynnghunh/sepsis?select=README.md).\n
|
48 |
+
|
49 |
+
### Features
|
50 |
+
`PRG:` Plasma glucose\n
|
51 |
+
`PL:` Blood Work Result-1 (mu U/ml)\n
|
52 |
+
`PR:` Blood Pressure (mm Hg)\n
|
53 |
+
`SK:` Blood Work Result-2 (mm)\n
|
54 |
+
`TS:` Blood Work Result-3 (mu U/ml)\n
|
55 |
+
`M11:` Body mass index (weight in kg/(height in m)^2\n
|
56 |
+
`BD2:` Blood Work Result-4 (mu U/ml)\n
|
57 |
+
`Age:` patients age (years)\n
|
58 |
+
`Insurance:` If a patient holds a valid insurance card\n
|
59 |
+
|
60 |
+
### Results
|
61 |
+
**Sepsis prediction:** *Positive* if a patient in ICU will develop a sepsis, and *Negative* otherwise\n
|
62 |
+
|
63 |
+
**Sepsis probability:** In percentage\n
|
64 |
+
|
65 |
+
### GraphQL API
|
66 |
+
To explore the GraphQL sub-application (built-with strawberry) to this RESTFul API click the link below.\n
|
67 |
+
🍓[GraphQL](/graphql)
|
68 |
+
|
69 |
+
### Let's Connect
|
70 |
+
👨⚕️ `Gabriel Okundaye`\n
|
71 |
+
[<img src="https://upload.wikimedia.org/wikipedia/commons/c/ca/LinkedIn_logo_initials.png" alt="LinkedIn" width="20" height="20"> LinkendIn](https://www.linkedin.com/in/dr-gabriel-okundaye)
|
72 |
+
|
73 |
+
[<img src="https://github.githubassets.com/images/modules/logos_page/GitHub-Mark.png" alt="GitHub" width="20" height="20"> GitHub](https://github.com/D0nG4667/sepsis_prediction_full_stack)
|
74 |
+
|
75 |
+
"""
|
graph_ql.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import strawberry
|
2 |
+
from strawberry.asgi import GraphQL
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
import joblib
|
6 |
+
from sklearn.pipeline import Pipeline
|
7 |
+
from sklearn.preprocessing._label import LabelEncoder
|
8 |
+
|
9 |
+
import httpx
|
10 |
+
from io import BytesIO
|
11 |
+
|
12 |
+
from typing import Tuple, List, Optional, Union
|
13 |
+
from enum import Enum
|
14 |
+
|
15 |
+
|
16 |
+
from config import RANDOM_FOREST_URL, XGBOOST_URL, ENCODER_URL
|
17 |
+
|
18 |
+
import logging
|
19 |
+
|
20 |
+
|
21 |
+
# API input features
|
22 |
+
|
23 |
+
@strawberry.enum
|
24 |
+
class ModelChoice(Enum):
|
25 |
+
RandomForestClassifier = RANDOM_FOREST_URL
|
26 |
+
XGBoostClassifier = XGBOOST_URL
|
27 |
+
|
28 |
+
|
29 |
+
@strawberry.input
|
30 |
+
class SepsisFeatures:
|
31 |
+
prg: List[int]
|
32 |
+
pl: List[int]
|
33 |
+
pr: List[int]
|
34 |
+
sk: List[int]
|
35 |
+
ts: List[int]
|
36 |
+
m11: List[float]
|
37 |
+
bd2: List[float]
|
38 |
+
age: List[int]
|
39 |
+
insurance: List[int]
|
40 |
+
|
41 |
+
|
42 |
+
@strawberry.type
|
43 |
+
class Url:
|
44 |
+
url: str
|
45 |
+
pipeline_url: str
|
46 |
+
encoder_url: str
|
47 |
+
|
48 |
+
|
49 |
+
@strawberry.type
|
50 |
+
class ResultData:
|
51 |
+
prediction: List[str]
|
52 |
+
probability: List[float]
|
53 |
+
|
54 |
+
|
55 |
+
@strawberry.type
|
56 |
+
class PredictionResponse:
|
57 |
+
execution_msg: str
|
58 |
+
execution_code: int
|
59 |
+
result: ResultData
|
60 |
+
|
61 |
+
|
62 |
+
@strawberry.type
|
63 |
+
class ErrorResponse:
|
64 |
+
execution_msg: str
|
65 |
+
execution_code: int
|
66 |
+
error: Optional[str]
|
67 |
+
|
68 |
+
|
69 |
+
logging.basicConfig(level=logging.ERROR,
|
70 |
+
format='%(asctime)s - %(levelname)s - %(message)s')
|
71 |
+
|
72 |
+
|
73 |
+
async def url_to_data(url: Url) -> BytesIO:
|
74 |
+
async with httpx.AsyncClient() as client:
|
75 |
+
response = await client.get(url)
|
76 |
+
response.raise_for_status() # Ensure we catch any HTTP errors
|
77 |
+
# Convert response content to BytesIO object
|
78 |
+
data = BytesIO(response.content)
|
79 |
+
return data
|
80 |
+
|
81 |
+
|
82 |
+
# Load the model pipelines and encoder
|
83 |
+
async def load_pipeline(pipeline_url: Url, encoder_url: Url) -> Tuple[Pipeline, LabelEncoder]:
|
84 |
+
pipeline, encoder = None, None
|
85 |
+
try:
|
86 |
+
pipeline: Pipeline = joblib.load(await url_to_data(pipeline_url))
|
87 |
+
encoder: LabelEncoder = joblib.load(await url_to_data(encoder_url))
|
88 |
+
except Exception as e:
|
89 |
+
logging.error(
|
90 |
+
"Omg, an error occurred in loading the pipeline resources: %s", e)
|
91 |
+
finally:
|
92 |
+
return pipeline, encoder
|
93 |
+
|
94 |
+
|
95 |
+
async def pipeline_classifier(pipeline: Pipeline, encoder: LabelEncoder, data: SepsisFeatures) -> Union[ErrorResponse, PredictionResponse]:
|
96 |
+
msg = 'Execution failed'
|
97 |
+
code = 0
|
98 |
+
output = ErrorResponse(**{'execution_msg': msg,
|
99 |
+
'execution_code': code, 'error': None})
|
100 |
+
try:
|
101 |
+
# Create dataframe
|
102 |
+
df = pd.DataFrame.from_dict(data.__dict__)
|
103 |
+
|
104 |
+
# Make prediction
|
105 |
+
preds = pipeline.predict(df)
|
106 |
+
preds_int = [int(pred) for pred in preds]
|
107 |
+
|
108 |
+
predictions = encoder.inverse_transform(preds_int)
|
109 |
+
probabilities_np = pipeline.predict_proba(df)
|
110 |
+
|
111 |
+
probabilities = [round(float(max(prob)*100), 2)
|
112 |
+
for prob in probabilities_np]
|
113 |
+
|
114 |
+
result = ResultData(**{"prediction": predictions,
|
115 |
+
"probability": probabilities}
|
116 |
+
)
|
117 |
+
|
118 |
+
msg = 'Execution was successful'
|
119 |
+
code = 1
|
120 |
+
output = PredictionResponse(
|
121 |
+
**{'execution_msg': msg,
|
122 |
+
'execution_code': code, 'result': result}
|
123 |
+
)
|
124 |
+
|
125 |
+
except Exception as e:
|
126 |
+
error = f"Omg, pipeline classifier and/or encoder failure. {e}"
|
127 |
+
|
128 |
+
output = ErrorResponse(**{'execution_msg': msg,
|
129 |
+
'execution_code': code, 'error': error})
|
130 |
+
|
131 |
+
finally:
|
132 |
+
return output
|
133 |
+
|
134 |
+
|
135 |
+
@strawberry.type
|
136 |
+
class Query:
|
137 |
+
@strawberry.field
|
138 |
+
async def predict_sepsis(self, model: ModelChoice, data: SepsisFeatures) -> Union[ErrorResponse, PredictionResponse]:
|
139 |
+
pipeline_url: Url = model.value
|
140 |
+
pipeline, encoder = await load_pipeline(pipeline_url, ENCODER_URL)
|
141 |
+
|
142 |
+
output = await pipeline_classifier(pipeline, encoder, data)
|
143 |
+
|
144 |
+
return output
|
145 |
+
|
146 |
+
|
147 |
+
# Create the GraphQL Schema
|
148 |
+
schema = strawberry.Schema(query=Query)
|
149 |
+
|
150 |
+
# Create the GraphQL application
|
151 |
+
graphql_app = GraphQL(schema)
|
main.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi.responses import RedirectResponse
|
2 |
+
|
3 |
+
from graph_ql import graphql_app
|
4 |
+
from rest import app
|
5 |
+
|
6 |
+
|
7 |
+
# Add Graph QL Application to the FastAPI RESTFul Application
|
8 |
+
app.add_route("/graphql", graphql_app)
|
9 |
+
app.add_websocket_route("/graphql", graphql_app)
|
requirements.txt
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# aiocache==0.12.2
|
2 |
+
aiohttp==3.9.5
|
3 |
+
aiosignal==1.3.1
|
4 |
+
altair==5.3.0
|
5 |
+
annotated-types==0.7.0
|
6 |
+
anyio==4.2.0
|
7 |
+
argon2-cffi==21.3.0
|
8 |
+
argon2-cffi-bindings==21.2.0
|
9 |
+
asttokens==2.4.1
|
10 |
+
async-lru==2.0.4
|
11 |
+
attrs==23.1.0
|
12 |
+
Babel==2.11.0
|
13 |
+
beautifulsoup4==4.12.3
|
14 |
+
bleach==4.1.0
|
15 |
+
blinker==1.8.2
|
16 |
+
Brotli==1.0.9
|
17 |
+
cachetools==5.4.0
|
18 |
+
catboost==1.2.3
|
19 |
+
certifi==2024.7.4
|
20 |
+
cffi==1.16.0
|
21 |
+
charset-normalizer==3.3.2
|
22 |
+
click==8.1.7
|
23 |
+
colorama==0.4.6
|
24 |
+
comm==0.2.2
|
25 |
+
contourpy==1.2.1
|
26 |
+
cycler==0.12.1
|
27 |
+
debugpy==1.8.2
|
28 |
+
decorator==5.1.1
|
29 |
+
defusedxml==0.7.1
|
30 |
+
dnspython==2.6.1
|
31 |
+
email_validator==2.2.0
|
32 |
+
entrypoints==0.4
|
33 |
+
exceptiongroup==1.2.2
|
34 |
+
executing==2.0.1
|
35 |
+
extra-streamlit-components==0.1.71
|
36 |
+
Faker==26.0.0
|
37 |
+
fastapi==0.111.0
|
38 |
+
fastapi-cache2==0.2.1
|
39 |
+
fastapi-cli==0.0.4
|
40 |
+
fastjsonschema==2.16.2
|
41 |
+
favicon==0.7.0
|
42 |
+
filelock==3.15.4
|
43 |
+
fonttools==4.53.1
|
44 |
+
frozenlist==1.4.1
|
45 |
+
fsspec==2024.6.1
|
46 |
+
gitdb==4.0.11
|
47 |
+
GitPython==3.1.43
|
48 |
+
graphql-core==3.2.3
|
49 |
+
graphviz==0.20.3
|
50 |
+
h11==0.14.0
|
51 |
+
htbuilder==0.6.2
|
52 |
+
httpcore==1.0.5
|
53 |
+
httptools==0.6.1
|
54 |
+
httpx==0.27.0
|
55 |
+
huggingface-hub==0.24.1
|
56 |
+
idna==3.7
|
57 |
+
imbalanced-learn==0.12.3
|
58 |
+
importlib_metadata==8.0.0
|
59 |
+
inquirerpy==0.3.4
|
60 |
+
# ipykernel==6.29.5
|
61 |
+
# ipython==8.26.0
|
62 |
+
# ipywidgets==8.1.3
|
63 |
+
jedi==0.19.1
|
64 |
+
Jinja2==3.1.4
|
65 |
+
joblib==1.4.2
|
66 |
+
json5==0.9.6
|
67 |
+
jsonschema==4.19.2
|
68 |
+
jsonschema-specifications==2023.12.1
|
69 |
+
# jupyter_client==8.6.2
|
70 |
+
# jupyter_core==5.7.2
|
71 |
+
# jupyter-events==0.10.0
|
72 |
+
# jupyter-lsp==2.2.0
|
73 |
+
# jupyter_server==2.14.1
|
74 |
+
# jupyter_server_terminals==0.4.4
|
75 |
+
# jupyterlab==4.0.11
|
76 |
+
# jupyterlab-pygments==0.1.2
|
77 |
+
# jupyterlab_server==2.25.1
|
78 |
+
# jupyterlab_widgets==3.0.11
|
79 |
+
# kaleido==0.1.0.post1
|
80 |
+
kiwisolver==1.4.5
|
81 |
+
libcst==1.4.0
|
82 |
+
lightgbm==4.4.0
|
83 |
+
lxml==5.2.2
|
84 |
+
Markdown==3.6
|
85 |
+
markdown-it-py==3.0.0
|
86 |
+
markdownlit==0.0.7
|
87 |
+
MarkupSafe==2.1.3
|
88 |
+
# matplotlib==3.9.1
|
89 |
+
# matplotlib-inline==0.1.7
|
90 |
+
mdurl==0.1.2
|
91 |
+
mistune==2.0.4
|
92 |
+
more-itertools==10.3.0
|
93 |
+
multidict==6.0.5
|
94 |
+
# nbclient==0.8.0
|
95 |
+
# nbconvert==7.10.0
|
96 |
+
# nbformat==5.9.2
|
97 |
+
nest_asyncio==1.6.0
|
98 |
+
notebook_shim==0.2.3
|
99 |
+
numpy==1.26.4
|
100 |
+
orjson==3.10.6
|
101 |
+
overrides==7.4.0
|
102 |
+
packaging==24.1
|
103 |
+
pandas==2.2.2
|
104 |
+
pandocfilters==1.5.0
|
105 |
+
parso==0.8.4
|
106 |
+
pendulum==3.0.0
|
107 |
+
pfzy==0.3.4
|
108 |
+
pickleshare==0.7.5
|
109 |
+
pillow==10.4.0
|
110 |
+
pip==24.0
|
111 |
+
platformdirs==4.2.2
|
112 |
+
# plotly==5.22.0
|
113 |
+
prometheus-client==0.14.1
|
114 |
+
prompt_toolkit==3.0.47
|
115 |
+
protobuf==5.27.2
|
116 |
+
psutil==6.0.0
|
117 |
+
pure_eval==0.2.3
|
118 |
+
pyarrow==17.0.0
|
119 |
+
pycparser==2.21
|
120 |
+
pydantic==2.8.2
|
121 |
+
pydantic_core==2.20.1
|
122 |
+
pydeck==0.9.1
|
123 |
+
Pygments==2.18.0
|
124 |
+
pymdown-extensions==10.8.1
|
125 |
+
pyparsing==3.1.2
|
126 |
+
PySocks==1.7.1
|
127 |
+
python-dateutil==2.9.0
|
128 |
+
python-dotenv==1.0.1
|
129 |
+
python-json-logger==2.0.7
|
130 |
+
python-multipart==0.0.9
|
131 |
+
pytz==2024.1
|
132 |
+
# pywin32==306
|
133 |
+
# pywinpty==2.0.10
|
134 |
+
PyYAML==6.0.1
|
135 |
+
pyzmq==26.0.3
|
136 |
+
redis==5.0.7
|
137 |
+
referencing==0.35.1
|
138 |
+
requests==2.32.3
|
139 |
+
rfc3339-validator==0.1.4
|
140 |
+
rfc3986-validator==0.1.1
|
141 |
+
rich==13.7.1
|
142 |
+
rpds-py==0.10.6
|
143 |
+
scikit-learn==1.5.0
|
144 |
+
scipy==1.14.0
|
145 |
+
Send2Trash==1.8.2
|
146 |
+
setuptools==69.5.1
|
147 |
+
shellingham==1.5.4
|
148 |
+
six==1.16.0
|
149 |
+
# skops==0.10.0
|
150 |
+
smmap==5.0.1
|
151 |
+
sniffio==1.3.0
|
152 |
+
soupsieve==2.5
|
153 |
+
st-annotated-text==4.0.1
|
154 |
+
st-theme==1.2.3
|
155 |
+
stack-data==0.6.2
|
156 |
+
starlette==0.37.2
|
157 |
+
strawberry-graphql==0.236.2
|
158 |
+
# streamlit==1.36.0
|
159 |
+
# streamlit-camera-input-live==0.2.0
|
160 |
+
# streamlit-card==1.0.2
|
161 |
+
# streamlit-embedcode==0.1.2
|
162 |
+
# streamlit-extras==0.4.3
|
163 |
+
# streamlit-faker==0.0.3
|
164 |
+
# streamlit-image-coordinates==0.1.9
|
165 |
+
# streamlit-keyup==0.2.4
|
166 |
+
# streamlit-toggle-switch==1.0.2
|
167 |
+
# streamlit-vertical-slider==2.5.5
|
168 |
+
tabulate==0.9.0
|
169 |
+
tenacity==8.5.0
|
170 |
+
terminado==0.17.1
|
171 |
+
threadpoolctl==3.5.0
|
172 |
+
time-machine==2.14.2
|
173 |
+
tinycss2==1.2.1
|
174 |
+
toml==0.10.2
|
175 |
+
toolz==0.12.1
|
176 |
+
tornado==6.4.1
|
177 |
+
tqdm==4.66.4
|
178 |
+
traitlets==5.14.3
|
179 |
+
typer==0.12.3
|
180 |
+
typing_extensions==4.12.2
|
181 |
+
tzdata==2024.1
|
182 |
+
ujson==5.10.0
|
183 |
+
urllib3==2.2.2
|
184 |
+
uvicorn==0.30.1
|
185 |
+
validators==0.33.0
|
186 |
+
watchdog==4.0.1
|
187 |
+
watchfiles==0.22.0
|
188 |
+
wcwidth==0.2.13
|
189 |
+
webencodings==0.5.1
|
190 |
+
webp==0.4.0
|
191 |
+
websocket-client==1.8.0
|
192 |
+
websockets==12.0
|
193 |
+
wheel==0.43.0
|
194 |
+
widgetsnbextension==4.0.11
|
195 |
+
# win-inet-pton==1.1.0
|
196 |
+
xgboost==2.0.3
|
197 |
+
yarl==1.9.4
|
198 |
+
zipp==3.19.2
|
rest.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
|
4 |
+
from collections.abc import AsyncIterator
|
5 |
+
from contextlib import asynccontextmanager
|
6 |
+
|
7 |
+
from fastapi import FastAPI, Query
|
8 |
+
from fastapi.responses import FileResponse
|
9 |
+
from fastapi.staticfiles import StaticFiles
|
10 |
+
from fastapi_cache import FastAPICache
|
11 |
+
from fastapi_cache.backends.redis import RedisBackend
|
12 |
+
from fastapi_cache.coder import PickleCoder
|
13 |
+
from fastapi_cache.decorator import cache
|
14 |
+
import logging
|
15 |
+
|
16 |
+
from redis import asyncio as aioredis
|
17 |
+
|
18 |
+
from pydantic import BaseModel, Field
|
19 |
+
from typing import Tuple, List, Union, Optional
|
20 |
+
|
21 |
+
from sklearn.pipeline import Pipeline
|
22 |
+
from sklearn.preprocessing._label import LabelEncoder
|
23 |
+
import joblib
|
24 |
+
|
25 |
+
import pandas as pd
|
26 |
+
|
27 |
+
import httpx
|
28 |
+
from io import BytesIO
|
29 |
+
|
30 |
+
|
31 |
+
from config import ONE_DAY_SEC, ONE_WEEK_SEC, XGBOOST_URL, RANDOM_FOREST_URL, ENCODER_URL, ENV_PATH, DESCRIPTION, ALL_MODELS
|
32 |
+
|
33 |
+
load_dotenv(ENV_PATH)
|
34 |
+
|
35 |
+
|
36 |
+
@asynccontextmanager
|
37 |
+
async def lifespan(_: FastAPI) -> AsyncIterator[None]:
|
38 |
+
url = os.getenv("REDIS_URL")
|
39 |
+
username = os.getenv("REDIS_USERNAME")
|
40 |
+
password = os.getenv("REDIS_PASSWORD")
|
41 |
+
redis = aioredis.from_url(url=url, username=username,
|
42 |
+
password=password, encoding="utf8", decode_responses=True)
|
43 |
+
FastAPICache.init(RedisBackend(redis), prefix="fastapi-cache")
|
44 |
+
yield
|
45 |
+
|
46 |
+
|
47 |
+
# FastAPI Object
|
48 |
+
app = FastAPI(
|
49 |
+
title='Sepsis classification',
|
50 |
+
version='1.0.0',
|
51 |
+
description=DESCRIPTION,
|
52 |
+
lifespan=lifespan,
|
53 |
+
)
|
54 |
+
|
55 |
+
app.mount("/assets", StaticFiles(directory="assets"), name="assets")
|
56 |
+
|
57 |
+
|
58 |
+
@app.get('/favicon.ico', include_in_schema=False)
|
59 |
+
async def favicon():
|
60 |
+
file_name = "favicon.ico"
|
61 |
+
file_path = os.path.join(app.root_path, "assets", file_name)
|
62 |
+
return FileResponse(path=file_path, headers={"Content-Disposition": "attachment; filename=" + file_name})
|
63 |
+
|
64 |
+
|
65 |
+
# API input features
|
66 |
+
|
67 |
+
class SepsisFeatures(BaseModel):
|
68 |
+
prg: List[int] = Field(description="PRG: Plasma glucose")
|
69 |
+
pl: List[int] = Field(description="PL: Blood Work Result-1 (mu U/ml)")
|
70 |
+
pr: List[int] = Field(description="PR: Blood Pressure (mm Hg)")
|
71 |
+
sk: List[int] = Field(description="SK: Blood Work Result-2 (mm)")
|
72 |
+
ts: List[int] = Field(description="TS: Blood Work Result-3 (mu U/ml)")
|
73 |
+
m11: List[float] = Field(
|
74 |
+
description="M11: Body mass index (weight in kg/(height in m)^2")
|
75 |
+
bd2: List[float] = Field(description="BD2: Blood Work Result-4 (mu U/ml)")
|
76 |
+
age: List[int] = Field(description="Age: patients age (years)")
|
77 |
+
insurance: List[int] = Field(
|
78 |
+
description="Insurance: If a patient holds a valid insurance card")
|
79 |
+
|
80 |
+
|
81 |
+
class Url(BaseModel):
|
82 |
+
url: str
|
83 |
+
pipeline_url: str
|
84 |
+
encoder_url: str
|
85 |
+
|
86 |
+
|
87 |
+
class ResultData(BaseModel):
|
88 |
+
prediction: List[str]
|
89 |
+
probability: List[float]
|
90 |
+
|
91 |
+
|
92 |
+
class PredictionResponse(BaseModel):
|
93 |
+
execution_msg: str
|
94 |
+
execution_code: int
|
95 |
+
result: ResultData
|
96 |
+
|
97 |
+
|
98 |
+
class ErrorResponse(BaseModel):
|
99 |
+
execution_msg: str
|
100 |
+
execution_code: int
|
101 |
+
error: Optional[str]
|
102 |
+
|
103 |
+
|
104 |
+
logging.basicConfig(level=logging.ERROR,
|
105 |
+
format='%(asctime)s - %(levelname)s - %(message)s')
|
106 |
+
|
107 |
+
|
108 |
+
# Load the model pipelines and encoder
|
109 |
+
# Cache for 1 day
|
110 |
+
@cache(expire=ONE_DAY_SEC, namespace='pipeline_resource', coder=PickleCoder)
|
111 |
+
async def load_pipeline(pipeline_url: Url, encoder_url: Url) -> Tuple[Pipeline, LabelEncoder]:
|
112 |
+
async def url_to_data(url: Url):
|
113 |
+
async with httpx.AsyncClient() as client:
|
114 |
+
response = await client.get(url)
|
115 |
+
response.raise_for_status() # Ensure we catch any HTTP errors
|
116 |
+
# Convert response content to BytesIO object
|
117 |
+
data = BytesIO(response.content)
|
118 |
+
return data
|
119 |
+
|
120 |
+
pipeline, encoder = None, None
|
121 |
+
try:
|
122 |
+
pipeline: Pipeline = joblib.load(await url_to_data(pipeline_url))
|
123 |
+
encoder: LabelEncoder = joblib.load(await url_to_data(encoder_url))
|
124 |
+
except Exception as e:
|
125 |
+
logging.error(
|
126 |
+
"Omg, an error occurred in loading the pipeline resources: %s", e)
|
127 |
+
finally:
|
128 |
+
return pipeline, encoder
|
129 |
+
|
130 |
+
|
131 |
+
# Endpoints
|
132 |
+
|
133 |
+
# Status endpoint: check if api is online
|
134 |
+
@app.get('/')
|
135 |
+
@cache(expire=ONE_WEEK_SEC, namespace='status_check') # Cache for 1 week
|
136 |
+
async def status_check():
|
137 |
+
return {"Status": "API is online..."}
|
138 |
+
|
139 |
+
|
140 |
+
@cache(expire=ONE_DAY_SEC, namespace='pipeline_classifier') # Cache for 1 day
|
141 |
+
async def pipeline_classifier(pipeline: Pipeline, encoder: LabelEncoder, data: SepsisFeatures) -> Union[ErrorResponse, PredictionResponse]:
|
142 |
+
msg = 'Execution failed'
|
143 |
+
code = 0
|
144 |
+
output = ErrorResponse(**{'execution_msg': msg,
|
145 |
+
'execution_code': code, 'error': None})
|
146 |
+
|
147 |
+
try:
|
148 |
+
# Create dataframe
|
149 |
+
df = pd.DataFrame.from_dict(data.__dict__)
|
150 |
+
|
151 |
+
# Make prediction
|
152 |
+
preds = pipeline.predict(df)
|
153 |
+
preds_int = [int(pred) for pred in preds]
|
154 |
+
|
155 |
+
predictions = encoder.inverse_transform(preds_int)
|
156 |
+
probabilities_np = pipeline.predict_proba(df)
|
157 |
+
|
158 |
+
probabilities = [round(float(max(prob)*100), 2)
|
159 |
+
for prob in probabilities_np]
|
160 |
+
|
161 |
+
result = ResultData(**{"prediction": predictions,
|
162 |
+
"probability": probabilities})
|
163 |
+
|
164 |
+
msg = 'Execution was successful'
|
165 |
+
code = 1
|
166 |
+
output = PredictionResponse(
|
167 |
+
**{'execution_msg': msg,
|
168 |
+
'execution_code': code, 'result': result}
|
169 |
+
)
|
170 |
+
|
171 |
+
except Exception as e:
|
172 |
+
error = f"Omg, pipeline classifier and/or encoder failure. {e}"
|
173 |
+
output = ErrorResponse(**{'execution_msg': msg,
|
174 |
+
'execution_code': code, 'error': error})
|
175 |
+
|
176 |
+
finally:
|
177 |
+
return output
|
178 |
+
|
179 |
+
|
180 |
+
# Random forest endpoint: classify sepsis with random forest
|
181 |
+
@app.post('/api/v1/random_forest/prediction', tags=['Random Forest'])
|
182 |
+
async def random_forest_classifier(data: SepsisFeatures) -> Union[ErrorResponse, PredictionResponse]:
|
183 |
+
random_forest_pipeline, encoder = await load_pipeline(RANDOM_FOREST_URL, ENCODER_URL)
|
184 |
+
output = await pipeline_classifier(random_forest_pipeline, encoder, data)
|
185 |
+
return output
|
186 |
+
|
187 |
+
|
188 |
+
# Xgboost endpoint: classify sepsis with xgboost
|
189 |
+
@app.post('/api/v1/xgboost/prediction', tags=['XGBoost'])
|
190 |
+
async def xgboost_classifier(data: SepsisFeatures) -> Union[ErrorResponse, PredictionResponse]:
|
191 |
+
xgboost_pipeline, encoder = await load_pipeline(XGBOOST_URL, ENCODER_URL)
|
192 |
+
output = await pipeline_classifier(xgboost_pipeline, encoder, data)
|
193 |
+
return output
|
194 |
+
|
195 |
+
|
196 |
+
@app.post('/api/v1/prediction', tags=['All Models'])
|
197 |
+
async def query_sepsis_prediction(data: SepsisFeatures, model: str = Query('RandomForestClassifier', enum=list(ALL_MODELS.keys()))) -> Union[ErrorResponse, PredictionResponse]:
|
198 |
+
pipeline_url: Url = ALL_MODELS[model]
|
199 |
+
pipeline, encoder = await load_pipeline(pipeline_url, ENCODER_URL)
|
200 |
+
output = await pipeline_classifier(pipeline, encoder, data)
|
201 |
+
return output
|
utils/pipeline_helper.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from typing import Union
|
3 |
+
|
4 |
+
numerical_features = ['prg', 'pl', 'pr', 'sk', 'ts', 'm11', 'bd2', 'age']
|
5 |
+
|
6 |
+
categorical_features = ['insurance']
|
7 |
+
|
8 |
+
new_features = ['age_group']
|
9 |
+
|
10 |
+
|
11 |
+
def as_category(data: Union[pd.DataFrame | pd.Series]) -> Union[pd.DataFrame | pd.Series]:
|
12 |
+
return data.astype('category')
|
13 |
+
|
14 |
+
|
15 |
+
def feature_creation(df: pd.DataFrame) -> pd.DataFrame:
|
16 |
+
df_copy = df.copy()
|
17 |
+
if 'age_group' not in df_copy.columns and 'age' in df_copy.columns:
|
18 |
+
df_copy['age_group'] = df_copy['age'].apply(
|
19 |
+
lambda x: '60 and above' if x >= 60 else 'below 60')
|
20 |
+
df_copy['age_group'] = as_category(df_copy['age_group'])
|
21 |
+
df_copy.drop(columns='age', inplace=True)
|
22 |
+
|
23 |
+
return df_copy
|