Spaces:
Running
on
T4
Running
on
T4
gabrielchua
commited on
Commit
·
8a1ab06
1
Parent(s):
0d77404
use Parler-TTS Mini
Browse files- app.py +31 -7
- requirements.txt +1 -0
- utils.py +46 -16
app.py
CHANGED
@@ -25,7 +25,7 @@ from utils import generate_script, generate_audio, parse_url
|
|
25 |
class DialogueItem(BaseModel):
|
26 |
"""A single dialogue item."""
|
27 |
|
28 |
-
speaker: Literal["Host (
|
29 |
text: str
|
30 |
|
31 |
|
@@ -41,10 +41,12 @@ def generate_podcast(
|
|
41 |
files: List[str],
|
42 |
url: Optional[str],
|
43 |
tone: Optional[str],
|
|
|
44 |
length: Optional[str],
|
45 |
language: str
|
46 |
) -> Tuple[str, str]:
|
47 |
"""Generate the audio and transcript from the PDFs and/or URL."""
|
|
|
48 |
text = ""
|
49 |
|
50 |
# Change language to the appropriate code
|
@@ -57,6 +59,12 @@ def generate_podcast(
|
|
57 |
"Korean": "KR",
|
58 |
}
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
# Check if at least one input is provided
|
61 |
if not files and not url:
|
62 |
raise gr.Error("Please provide at least one PDF file or a URL.")
|
@@ -109,16 +117,17 @@ def generate_podcast(
|
|
109 |
total_characters = 0
|
110 |
|
111 |
for line in llm_output.dialogue:
|
|
|
112 |
logger.info(f"Generating audio for {line.speaker}: {line.text}")
|
113 |
-
if line.speaker == "Host (
|
114 |
-
speaker = f"**
|
115 |
else:
|
116 |
speaker = f"**{llm_output.name_of_guest}**: {line.text}"
|
117 |
transcript += speaker + "\n\n"
|
118 |
total_characters += len(line.text)
|
119 |
|
120 |
# Get audio file path
|
121 |
-
audio_file_path = generate_audio(line.text, line.speaker, language_mapping[language])
|
122 |
# Read the audio file into an AudioSegment
|
123 |
audio_segment = AudioSegment.from_file(audio_file_path)
|
124 |
audio_segments.append(audio_segment)
|
@@ -166,15 +175,20 @@ demo = gr.Interface(
|
|
166 |
label="3. 🎭 Choose the tone",
|
167 |
value="Fun"
|
168 |
),
|
|
|
|
|
|
|
|
|
|
|
169 |
gr.Radio(
|
170 |
choices=["Short (1-2 min)", "Medium (3-5 min)"],
|
171 |
-
label="
|
172 |
value="Medium (3-5 min)"
|
173 |
),
|
174 |
gr.Dropdown(
|
175 |
choices=["English", "Spanish", "French", "Chinese", "Japanese", "Korean"],
|
176 |
value="English",
|
177 |
-
label="
|
178 |
),
|
179 |
],
|
180 |
outputs=[
|
@@ -190,13 +204,23 @@ demo = gr.Interface(
|
|
190 |
[str(Path("examples/1310.4546v1.pdf"))],
|
191 |
"",
|
192 |
"Fun",
|
193 |
-
"
|
|
|
194 |
"English"
|
195 |
],
|
196 |
[
|
197 |
[],
|
198 |
"https://en.wikipedia.org/wiki/Hugging_Face",
|
199 |
"Fun",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
"Short (1-2 min)",
|
201 |
"English"
|
202 |
],
|
|
|
25 |
class DialogueItem(BaseModel):
|
26 |
"""A single dialogue item."""
|
27 |
|
28 |
+
speaker: Literal["Host (Jenna)", "Guest"]
|
29 |
text: str
|
30 |
|
31 |
|
|
|
41 |
files: List[str],
|
42 |
url: Optional[str],
|
43 |
tone: Optional[str],
|
44 |
+
voice: Optional[str],
|
45 |
length: Optional[str],
|
46 |
language: str
|
47 |
) -> Tuple[str, str]:
|
48 |
"""Generate the audio and transcript from the PDFs and/or URL."""
|
49 |
+
print(tone, voice, length, language)
|
50 |
text = ""
|
51 |
|
52 |
# Change language to the appropriate code
|
|
|
59 |
"Korean": "KR",
|
60 |
}
|
61 |
|
62 |
+
# Change voice to the appropriate code
|
63 |
+
voice_mapping = {
|
64 |
+
"Male": "Gary",
|
65 |
+
"Female": "Laura",
|
66 |
+
}
|
67 |
+
|
68 |
# Check if at least one input is provided
|
69 |
if not files and not url:
|
70 |
raise gr.Error("Please provide at least one PDF file or a URL.")
|
|
|
117 |
total_characters = 0
|
118 |
|
119 |
for line in llm_output.dialogue:
|
120 |
+
print(line.speaker, line.text, language_mapping[language], voice_mapping[voice])
|
121 |
logger.info(f"Generating audio for {line.speaker}: {line.text}")
|
122 |
+
if line.speaker == "Host (Jenna)":
|
123 |
+
speaker = f"**Jenna**: {line.text}"
|
124 |
else:
|
125 |
speaker = f"**{llm_output.name_of_guest}**: {line.text}"
|
126 |
transcript += speaker + "\n\n"
|
127 |
total_characters += len(line.text)
|
128 |
|
129 |
# Get audio file path
|
130 |
+
audio_file_path = generate_audio(line.text, line.speaker, language_mapping[language], voice_mapping[voice])
|
131 |
# Read the audio file into an AudioSegment
|
132 |
audio_segment = AudioSegment.from_file(audio_file_path)
|
133 |
audio_segments.append(audio_segment)
|
|
|
175 |
label="3. 🎭 Choose the tone",
|
176 |
value="Fun"
|
177 |
),
|
178 |
+
gr.Radio(
|
179 |
+
choices=["Male", "Female"],
|
180 |
+
label="4. 🎭 Choose the guest's voice",
|
181 |
+
value="Female"
|
182 |
+
),
|
183 |
gr.Radio(
|
184 |
choices=["Short (1-2 min)", "Medium (3-5 min)"],
|
185 |
+
label="5. ⏱️ Choose the length",
|
186 |
value="Medium (3-5 min)"
|
187 |
),
|
188 |
gr.Dropdown(
|
189 |
choices=["English", "Spanish", "French", "Chinese", "Japanese", "Korean"],
|
190 |
value="English",
|
191 |
+
label="6. 🌐 Choose the language (Highly experimental, English is recommended)",
|
192 |
),
|
193 |
],
|
194 |
outputs=[
|
|
|
204 |
[str(Path("examples/1310.4546v1.pdf"))],
|
205 |
"",
|
206 |
"Fun",
|
207 |
+
"Female",
|
208 |
+
"Medium (3-5 min)",
|
209 |
"English"
|
210 |
],
|
211 |
[
|
212 |
[],
|
213 |
"https://en.wikipedia.org/wiki/Hugging_Face",
|
214 |
"Fun",
|
215 |
+
"Male"
|
216 |
+
"Short (1-2 min)",
|
217 |
+
"English"
|
218 |
+
],
|
219 |
+
[
|
220 |
+
[],
|
221 |
+
"https://simple.wikipedia.org/wiki/Taylor_Swift",
|
222 |
+
"Fun",
|
223 |
+
"Female"
|
224 |
"Short (1-2 min)",
|
225 |
"English"
|
226 |
],
|
requirements.txt
CHANGED
@@ -2,6 +2,7 @@ gradio==4.44.0
|
|
2 |
granian==1.4
|
3 |
loguru==0.7
|
4 |
openai==1.50.2
|
|
|
5 |
promptic==0.7.5
|
6 |
pydantic==2.7
|
7 |
pypdf==4.1
|
|
|
2 |
granian==1.4
|
3 |
loguru==0.7
|
4 |
openai==1.50.2
|
5 |
+
parler-tts @ git+https://github.com/huggingface/parler-tts@main
|
6 |
promptic==0.7.5
|
7 |
pydantic==2.7
|
8 |
pypdf==4.1
|
utils.py
CHANGED
@@ -7,12 +7,19 @@ Functions:
|
|
7 |
- get_audio: Get the audio from the TTS model from HF Spaces.
|
8 |
"""
|
9 |
|
10 |
-
import os
|
11 |
import requests
|
|
|
12 |
|
|
|
|
|
|
|
13 |
from gradio_client import Client
|
14 |
from openai import OpenAI
|
|
|
15 |
from pydantic import ValidationError
|
|
|
|
|
16 |
|
17 |
MODEL_ID = "accounts/fireworks/models/llama-v3p1-405b-instruct"
|
18 |
JINA_URL = "https://r.jina.ai/"
|
@@ -24,6 +31,10 @@ client = OpenAI(
|
|
24 |
|
25 |
hf_client = Client("mrfakename/MeloTTS")
|
26 |
|
|
|
|
|
|
|
|
|
27 |
|
28 |
def generate_script(system_prompt: str, input_text: str, output_model):
|
29 |
"""Get the dialogue from the LLM."""
|
@@ -68,19 +79,38 @@ def parse_url(url: str) -> str:
|
|
68 |
return response.text
|
69 |
|
70 |
|
71 |
-
def generate_audio(text: str, speaker: str, language: str) ->
|
72 |
-
"""
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
- get_audio: Get the audio from the TTS model from HF Spaces.
|
8 |
"""
|
9 |
|
10 |
+
import os
|
11 |
import requests
|
12 |
+
import tempfile
|
13 |
|
14 |
+
|
15 |
+
import soundfile as sf
|
16 |
+
import torch
|
17 |
from gradio_client import Client
|
18 |
from openai import OpenAI
|
19 |
+
from parler_tts import ParlerTTSForConditionalGeneration
|
20 |
from pydantic import ValidationError
|
21 |
+
from transformers import AutoTokenizer
|
22 |
+
|
23 |
|
24 |
MODEL_ID = "accounts/fireworks/models/llama-v3p1-405b-instruct"
|
25 |
JINA_URL = "https://r.jina.ai/"
|
|
|
31 |
|
32 |
hf_client = Client("mrfakename/MeloTTS")
|
33 |
|
34 |
+
# Initialize the model and tokenizer (do this outside the function for efficiency)
|
35 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
36 |
+
model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-mini-v1").to(device)
|
37 |
+
tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-mini-v1")
|
38 |
|
39 |
def generate_script(system_prompt: str, input_text: str, output_model):
|
40 |
"""Get the dialogue from the LLM."""
|
|
|
79 |
return response.text
|
80 |
|
81 |
|
82 |
+
def generate_audio(text: str, speaker: str, language: str, voice: str) -> str:
|
83 |
+
"""Generate audio using the local Parler TTS model or HuggingFace client."""
|
84 |
+
|
85 |
+
if language == "EN":
|
86 |
+
# Adjust the description based on speaker and language
|
87 |
+
if speaker == "Guest":
|
88 |
+
description = f"{voice} has a slightly expressive and animated speech, speaking at a moderate speed with natural pitch variations. The voice is clear and close-up, as if recorded in a professional studio."
|
89 |
+
else: # host
|
90 |
+
description = f"{voice} has a professional and engaging tone, speaking at a moderate to slightly faster pace. The voice is clear, warm, and sounds like a seasoned podcast host."
|
91 |
+
|
92 |
+
# Prepare inputs
|
93 |
+
input_ids = tokenizer(description, return_tensors="pt").input_ids.to(device)
|
94 |
+
prompt_input_ids = tokenizer(text, return_tensors="pt").input_ids.to(device)
|
95 |
+
|
96 |
+
# Generate audio
|
97 |
+
generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
|
98 |
+
audio_arr = generation.cpu().numpy().squeeze()
|
99 |
+
|
100 |
+
# Save to temporary file
|
101 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file:
|
102 |
+
sf.write(temp_file.name, audio_arr, model.config.sampling_rate, format='mp3')
|
103 |
+
|
104 |
+
return temp_file.name
|
105 |
|
106 |
+
else:
|
107 |
+
accent = language
|
108 |
+
if speaker == "Guest":
|
109 |
+
speed = 0.9
|
110 |
+
else: # host
|
111 |
+
speed = 1.1
|
112 |
+
# Generate audio
|
113 |
+
result = hf_client.predict(
|
114 |
+
text=text, language=language, speaker=accent, speed=speed, api_name="/synthesize"
|
115 |
+
)
|
116 |
+
return result
|