Spaces:
Running
on
T4
Running
on
T4
gabrielchua
commited on
Commit
·
f136260
1
Parent(s):
9f31d5a
remove Parler-TTS Mini
Browse files
app.py
CHANGED
@@ -25,7 +25,7 @@ from utils import generate_script, generate_audio, parse_url
|
|
25 |
class DialogueItem(BaseModel):
|
26 |
"""A single dialogue item."""
|
27 |
|
28 |
-
speaker: Literal["Host (
|
29 |
text: str
|
30 |
|
31 |
|
@@ -41,7 +41,6 @@ def generate_podcast(
|
|
41 |
files: List[str],
|
42 |
url: Optional[str],
|
43 |
tone: Optional[str],
|
44 |
-
voice: Optional[str],
|
45 |
length: Optional[str],
|
46 |
language: str
|
47 |
) -> Tuple[str, str]:
|
@@ -58,12 +57,6 @@ def generate_podcast(
|
|
58 |
"Korean": "KR",
|
59 |
}
|
60 |
|
61 |
-
# Change voice to the appropriate code
|
62 |
-
voice_mapping = {
|
63 |
-
"Male": "Gary",
|
64 |
-
"Female": "Laura",
|
65 |
-
}
|
66 |
-
|
67 |
# Check if at least one input is provided
|
68 |
if not files and not url:
|
69 |
raise gr.Error("Please provide at least one PDF file or a URL.")
|
@@ -116,16 +109,16 @@ def generate_podcast(
|
|
116 |
total_characters = 0
|
117 |
|
118 |
for line in llm_output.dialogue:
|
119 |
-
logger.info(f"Generating audio for {line.speaker}
|
120 |
-
if line.speaker == "Host (
|
121 |
-
speaker = f"**
|
122 |
else:
|
123 |
speaker = f"**{llm_output.name_of_guest}**: {line.text}"
|
124 |
transcript += speaker + "\n\n"
|
125 |
total_characters += len(line.text)
|
126 |
|
127 |
# Get audio file path
|
128 |
-
audio_file_path = generate_audio(line.text, line.speaker, language_mapping[language]
|
129 |
# Read the audio file into an AudioSegment
|
130 |
audio_segment = AudioSegment.from_file(audio_file_path)
|
131 |
audio_segments.append(audio_segment)
|
@@ -173,20 +166,15 @@ demo = gr.Interface(
|
|
173 |
label="3. 🎭 Choose the tone",
|
174 |
value="Fun"
|
175 |
),
|
176 |
-
gr.Radio(
|
177 |
-
choices=["Male", "Female"],
|
178 |
-
label="4. 🎭 Choose the guest's voice",
|
179 |
-
value="Female"
|
180 |
-
),
|
181 |
gr.Radio(
|
182 |
choices=["Short (1-2 min)", "Medium (3-5 min)"],
|
183 |
-
label="
|
184 |
value="Medium (3-5 min)"
|
185 |
),
|
186 |
gr.Dropdown(
|
187 |
choices=["English", "Spanish", "French", "Chinese", "Japanese", "Korean"],
|
188 |
value="English",
|
189 |
-
label="
|
190 |
),
|
191 |
],
|
192 |
outputs=[
|
@@ -202,15 +190,13 @@ demo = gr.Interface(
|
|
202 |
[str(Path("examples/1310.4546v1.pdf"))],
|
203 |
"",
|
204 |
"Fun",
|
205 |
-
"
|
206 |
-
"Medium (3-5 min)",
|
207 |
"English"
|
208 |
],
|
209 |
[
|
210 |
[],
|
211 |
"https://en.wikipedia.org/wiki/Hugging_Face",
|
212 |
"Fun",
|
213 |
-
"Male",
|
214 |
"Short (1-2 min)",
|
215 |
"English"
|
216 |
],
|
@@ -218,14 +204,12 @@ demo = gr.Interface(
|
|
218 |
[],
|
219 |
"https://simple.wikipedia.org/wiki/Taylor_Swift",
|
220 |
"Fun",
|
221 |
-
"Female",
|
222 |
"Short (1-2 min)",
|
223 |
"English"
|
224 |
],
|
225 |
],
|
226 |
cache_examples=True,
|
227 |
-
examples_cache_dir="examples_cached"
|
228 |
)
|
229 |
|
230 |
if __name__ == "__main__":
|
231 |
-
demo.launch(show_api=True)
|
|
|
25 |
class DialogueItem(BaseModel):
|
26 |
"""A single dialogue item."""
|
27 |
|
28 |
+
speaker: Literal["Host (Jane)", "Guest"]
|
29 |
text: str
|
30 |
|
31 |
|
|
|
41 |
files: List[str],
|
42 |
url: Optional[str],
|
43 |
tone: Optional[str],
|
|
|
44 |
length: Optional[str],
|
45 |
language: str
|
46 |
) -> Tuple[str, str]:
|
|
|
57 |
"Korean": "KR",
|
58 |
}
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
# Check if at least one input is provided
|
61 |
if not files and not url:
|
62 |
raise gr.Error("Please provide at least one PDF file or a URL.")
|
|
|
109 |
total_characters = 0
|
110 |
|
111 |
for line in llm_output.dialogue:
|
112 |
+
logger.info(f"Generating audio for {line.speaker}: {line.text}")
|
113 |
+
if line.speaker == "Host (Jane)":
|
114 |
+
speaker = f"**Jane**: {line.text}"
|
115 |
else:
|
116 |
speaker = f"**{llm_output.name_of_guest}**: {line.text}"
|
117 |
transcript += speaker + "\n\n"
|
118 |
total_characters += len(line.text)
|
119 |
|
120 |
# Get audio file path
|
121 |
+
audio_file_path = generate_audio(line.text, line.speaker, language_mapping[language])
|
122 |
# Read the audio file into an AudioSegment
|
123 |
audio_segment = AudioSegment.from_file(audio_file_path)
|
124 |
audio_segments.append(audio_segment)
|
|
|
166 |
label="3. 🎭 Choose the tone",
|
167 |
value="Fun"
|
168 |
),
|
|
|
|
|
|
|
|
|
|
|
169 |
gr.Radio(
|
170 |
choices=["Short (1-2 min)", "Medium (3-5 min)"],
|
171 |
+
label="4. ⏱️ Choose the length",
|
172 |
value="Medium (3-5 min)"
|
173 |
),
|
174 |
gr.Dropdown(
|
175 |
choices=["English", "Spanish", "French", "Chinese", "Japanese", "Korean"],
|
176 |
value="English",
|
177 |
+
label="5. 🌐 Choose the language (Highly experimental, English is recommended)",
|
178 |
),
|
179 |
],
|
180 |
outputs=[
|
|
|
190 |
[str(Path("examples/1310.4546v1.pdf"))],
|
191 |
"",
|
192 |
"Fun",
|
193 |
+
"Short (1-2 min)",
|
|
|
194 |
"English"
|
195 |
],
|
196 |
[
|
197 |
[],
|
198 |
"https://en.wikipedia.org/wiki/Hugging_Face",
|
199 |
"Fun",
|
|
|
200 |
"Short (1-2 min)",
|
201 |
"English"
|
202 |
],
|
|
|
204 |
[],
|
205 |
"https://simple.wikipedia.org/wiki/Taylor_Swift",
|
206 |
"Fun",
|
|
|
207 |
"Short (1-2 min)",
|
208 |
"English"
|
209 |
],
|
210 |
],
|
211 |
cache_examples=True,
|
|
|
212 |
)
|
213 |
|
214 |
if __name__ == "__main__":
|
215 |
+
demo.launch(show_api=True)
|
utils.py
CHANGED
@@ -7,20 +7,12 @@ Functions:
|
|
7 |
- get_audio: Get the audio from the TTS model from HF Spaces.
|
8 |
"""
|
9 |
|
10 |
-
import os
|
11 |
import requests
|
12 |
-
import tempfile
|
13 |
|
14 |
-
|
15 |
-
import soundfile as sf
|
16 |
-
import spaces
|
17 |
-
import torch
|
18 |
from gradio_client import Client
|
19 |
from openai import OpenAI
|
20 |
-
from parler_tts import ParlerTTSForConditionalGeneration
|
21 |
from pydantic import ValidationError
|
22 |
-
from transformers import AutoTokenizer
|
23 |
-
|
24 |
|
25 |
MODEL_ID = "accounts/fireworks/models/llama-v3p1-405b-instruct"
|
26 |
JINA_URL = "https://r.jina.ai/"
|
@@ -32,10 +24,6 @@ client = OpenAI(
|
|
32 |
|
33 |
hf_client = Client("mrfakename/MeloTTS")
|
34 |
|
35 |
-
# Initialize the model and tokenizer (do this outside the function for efficiency)
|
36 |
-
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
37 |
-
model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-mini-v1").to(device)
|
38 |
-
tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-mini-v1")
|
39 |
|
40 |
def generate_script(system_prompt: str, input_text: str, output_model):
|
41 |
"""Get the dialogue from the LLM."""
|
@@ -79,38 +67,20 @@ def parse_url(url: str) -> str:
|
|
79 |
response = requests.get(full_url, timeout=60)
|
80 |
return response.text
|
81 |
|
82 |
-
def generate_audio(text: str, speaker: str, language: str, voice: str) -> str:
|
83 |
-
"""Generate audio using the local Parler TTS model or HuggingFace client."""
|
84 |
-
|
85 |
-
if language == "EN":
|
86 |
-
# Adjust the description based on speaker and language
|
87 |
-
if speaker == "Guest":
|
88 |
-
description = f"{voice} has a slightly expressive and animated speech, speaking at a moderate speed with natural pitch variations. The voice is clear and close-up, as if recorded in a professional studio."
|
89 |
-
else: # host
|
90 |
-
description = f"{voice} has a professional and engaging tone, speaking at a moderate to slightly faster pace. The voice is clear, warm, and sounds like a seasoned podcast host."
|
91 |
-
|
92 |
-
# Prepare inputs
|
93 |
-
input_ids = tokenizer(description, return_tensors="pt").input_ids.to(device)
|
94 |
-
prompt_input_ids = tokenizer(text, return_tensors="pt").input_ids.to(device)
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
|
|
105 |
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
speed = 1.1
|
112 |
-
# Generate audio
|
113 |
-
result = hf_client.predict(
|
114 |
-
text=text, language=language, speaker=accent, speed=speed, api_name="/synthesize"
|
115 |
-
)
|
116 |
-
return result
|
|
|
7 |
- get_audio: Get the audio from the TTS model from HF Spaces.
|
8 |
"""
|
9 |
|
10 |
+
import os
|
11 |
import requests
|
|
|
12 |
|
|
|
|
|
|
|
|
|
13 |
from gradio_client import Client
|
14 |
from openai import OpenAI
|
|
|
15 |
from pydantic import ValidationError
|
|
|
|
|
16 |
|
17 |
MODEL_ID = "accounts/fireworks/models/llama-v3p1-405b-instruct"
|
18 |
JINA_URL = "https://r.jina.ai/"
|
|
|
24 |
|
25 |
hf_client = Client("mrfakename/MeloTTS")
|
26 |
|
|
|
|
|
|
|
|
|
27 |
|
28 |
def generate_script(system_prompt: str, input_text: str, output_model):
|
29 |
"""Get the dialogue from the LLM."""
|
|
|
67 |
response = requests.get(full_url, timeout=60)
|
68 |
return response.text
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
+
def generate_audio(text: str, speaker: str, language: str) -> bytes:
|
72 |
+
"""Get the audio from the TTS model from HF Spaces and adjust pitch if necessary."""
|
73 |
+
if speaker == "Guest":
|
74 |
+
accent = "EN-US" if language == "EN" else language
|
75 |
+
speed = 0.9
|
76 |
+
else: # host
|
77 |
+
accent = "EN-Default" if language == "EN" else language
|
78 |
+
speed = 1
|
79 |
+
if language != "EN" and speaker != "Guest":
|
80 |
+
speed = 1.1
|
81 |
|
82 |
+
# Generate audio
|
83 |
+
result = hf_client.predict(
|
84 |
+
text=text, language=language, speaker=accent, speed=speed, api_name="/synthesize"
|
85 |
+
)
|
86 |
+
return result
|
|
|
|
|
|
|
|
|
|
|
|