remeajayi commited on
Commit
a87287b
·
1 Parent(s): 2f1adf4

upload app.py

Browse files
Files changed (1) hide show
  1. app.py +66 -0
app.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from huggingface_hub import from_pretrained_keras
3
+ import pandas as pd
4
+ import numpy as np
5
+ import json
6
+
7
+ f = open('scaler.json')
8
+ scaler = json.load(f)
9
+
10
+ def normalize_data(data):
11
+ df_test_value = (data - scaler["mean"]) / scaler["std"]
12
+ return df_test_value
13
+
14
+ def plot_test_data(df_test_value):
15
+ fig, ax = plt.subplots()
16
+ df_test_value.plot(legend=False, ax=ax)
17
+ return fig
18
+
19
+ def get_anomalies(df_test_value):
20
+ # Create sequences from test values.
21
+ x_test = create_sequences(df_test_value.values)
22
+ model = from_pretrained_keras("remeajayi/timeseries-anomaly-detection")
23
+
24
+ # Get test MAE loss.
25
+ x_test_pred = model.predict(x_test)
26
+ test_mae_loss = np.mean(np.abs(x_test_pred - x_test), axis=1)
27
+ test_mae_loss = test_mae_loss.reshape((-1))
28
+
29
+ # Detect all the samples which are anomalies.
30
+ anomalies = test_mae_loss > threshold
31
+ return anomalies
32
+
33
+ def plot_anomalies(df_test_value, data, anomalies):
34
+ # data i is an anomaly if samples [(i - timesteps + 1) to (i)] are anomalies
35
+ anomalous_data_indices = []
36
+ for data_idx in range(TIME_STEPS - 1, len(df_test_value) - TIME_STEPS + 1):
37
+ if np.all(anomalies[data_idx - TIME_STEPS + 1 : data_idx]):
38
+ anomalous_data_indices.append(data_idx)
39
+ df_subset = data.iloc[anomalous_data_indices]
40
+ fig, ax = plt.subplots()
41
+ data.plot(legend=False, ax=ax)
42
+ df_subset.plot(legend=False, ax=ax, color="r")
43
+ return fig
44
+
45
+ def master(file):
46
+ # read file
47
+ data = pd.read_csv(file, parse_dates=True, index_col="timestamp")
48
+ df_test_value = normalize_data(data)
49
+ # plot input test data
50
+ plot1 = plot_test_data(df_test_value)
51
+ # predict
52
+ anomalies = get_anomalies(df_test_value)
53
+ #plot anomalous data points
54
+ plot2 = plot_anomalies(df_test_value, data, anomalies)
55
+ return plot2
56
+
57
+ iface = gr.Interface(master,
58
+ gr.inputs.File(label="csv file"),
59
+ outputs=['plot'],
60
+ examples=["art_daily_jumpsup.csv"], title="Anomaly detection of timeseries data",
61
+ description = "Anomaly detection of timeseries data.",
62
+ article = "Author: <a href=\"https://www.linkedin.com/in/olohireme-ajayi/\">Reme Ajayi</a>"
63
+ )
64
+
65
+
66
+ iface.launch()