Spaces:
Running
Running
from django.http import JsonResponse | |
from rest_framework.response import Response | |
from rest_framework.views import APIView | |
from mistralai import Mistral | |
import os | |
import requests | |
from openai import OpenAI | |
from ollama import Client | |
from django.http import FileResponse | |
import io | |
class TTSView(APIView): | |
def post(self, request, format=None): | |
# Define the API endpoint | |
# Define the URL for the TTS API | |
url = 'http://localhost:5002/api/tts' | |
# Define the multiline text | |
text = "This is the first line" | |
# Prepare the parameters for the GET request | |
params = { | |
'text': text | |
} | |
# Make the GET request | |
response = requests.get(url, params=params) | |
# Check if the request was successful | |
if response.status_code == 200: | |
# Save the audio response as a WAV file | |
# Create a file-like object with the audio data | |
audio_data = io.BytesIO(response.content) | |
# Return the audio file as a response | |
return FileResponse(audio_data, as_attachment=True, filename='audio_output.wav') | |
else: | |
return Response({"error": "Failed to synthesize speech"}, status=response.status_code) | |
class SpeechASRView(APIView): | |
def post(self, request, format=None): | |
try: | |
data = request.data | |
##prompt = data['prompt'] | |
audio = data['audio'] | |
print('hre1') | |
client = OpenAI(api_key="cant-be-empty", base_url="http://0.0.0.0:11800/v1/") | |
print('her2') | |
#filename= '/home/gaganyatri/Music/test1.flac' | |
audio_bytes = audio.read() | |
#audio_file = open(filename, "rb") | |
transcript = client.audio.transcriptions.create( | |
model="Systran/faster-distil-whisper-small.en", file=audio_bytes | |
) | |
#print(transcript.text) | |
voice_content = transcript.text | |
return Response({"response": voice_content}) | |
except Exception as e: | |
print(f"An error occurred: {e}") | |
return Response({'error': 'Something went wrong'}, status=500) | |
class SpeechToSpeechView(APIView): | |
def post(self, request, format=None): | |
try: | |
data = request.data | |
##prompt = data['prompt'] | |
audio = data['audio'] | |
client = OpenAI(api_key="cant-be-empty", base_url="http://0.0.0.0:11800/v1/") | |
#filename= '/home/gaganyatri/Music/test1.flac' | |
audio_bytes = audio.read() | |
#audio_file = open(filename, "rb") | |
transcript = client.audio.transcriptions.create( | |
model="Systran/faster-distil-whisper-small.en", file=audio_bytes | |
) | |
#print(transcript.text) | |
voice_content = transcript.text | |
#content = 'audio recieved' | |
system_prompt = "Please summarize the following prompt into a concise and clear statement:" | |
model = "mistral-nemo:latest" | |
client = Client(host='http://localhost:11434') | |
response = client.chat( | |
model=model, | |
messages=[ | |
{ | |
"role": "system", | |
"content": system_prompt | |
}, | |
{ | |
"role": "user", | |
"content": voice_content, | |
} | |
], | |
) | |
# Extract the model's response about the image | |
response_text = response['message']['content'].strip() | |
url = 'http://localhost:5002/api/tts' | |
# Define the multiline text | |
#text = "This is the first line" | |
# Prepare the parameters for the GET request | |
params = { | |
'text': response_text | |
} | |
# Make the GET request | |
response = requests.get(url, params=params) | |
# Check if the request was successful | |
if response.status_code == 200: | |
# Save the audio response as a WAV file | |
# Create a file-like object with the audio data | |
audio_data = io.BytesIO(response.content) | |
# Return the audio file as a response | |
return FileResponse(audio_data, as_attachment=True, filename='audio_output.wav') | |
else: | |
return Response({"error": "Failed to synthesize speech"}, status=response.status_code) | |
except Exception as e: | |
print(f"An error occurred: {e}") | |
return Response({'error': 'Something went wrong'}, status=500) | |
class SpeechLLMView(APIView): | |
def post(self, request, format=None): | |
try: | |
data = request.data | |
##prompt = data['prompt'] | |
audio = data['audio'] | |
client = OpenAI(api_key="cant-be-empty", base_url="http://localhost:11800/v1/") | |
#filename= '/home/gaganyatri/Music/test1.flac' | |
audio_bytes = audio.read() | |
#audio_file = open(filename, "rb") | |
transcript = client.audio.transcriptions.create( | |
model="Systran/faster-distil-whisper-small.en", file=audio_bytes | |
) | |
#print(transcript.text) | |
voice_content = transcript.text | |
#content = 'audio recieved' | |
model = "mistral-nemo:latest" | |
client = Client(host='http://localhost:11434') | |
response = client.chat( | |
model=model, | |
messages=[{ | |
"role": "user", | |
"content": voice_content, | |
}], | |
) | |
# Extract the model's response about the image | |
response_text = response['message']['content'].strip() | |
return Response({"response": response_text}) | |
except Exception as e: | |
print(f"An error occurred: {e}") | |
return Response({'error': 'Something went wrong'}, status=500) | |
class TranslateLLMView(APIView): | |
def post(self, request, format=None): | |
try: | |
data = request.data | |
prompt = data['messages'][0]['prompt'] | |
# Specify model | |
source_language = data['sourceLanguage'] | |
target_language = data['targetLanguage'] | |
#model = data['model'] | |
# Define the messages for the chat | |
api_key=os.getenv("SARVAM_API_KEY", "") | |
url = "https://api.sarvam.ai/translate" | |
payload = { | |
"input": prompt, | |
"source_language_code": source_language, | |
"target_language_code": target_language, | |
"speaker_gender": "Male", | |
"mode": "formal", | |
"model": "mayura:v1", | |
"enable_preprocessing": True | |
} | |
headers = {"Content-Type": "application/json", | |
'API-Subscription-Key': f"{api_key}" | |
} | |
response = requests.request("POST", url, json=payload, headers=headers) | |
content = response.text | |
#print(chat_response.choices[0].message.content) | |
# Return the content of the response | |
return Response({"response": content}) | |
except Exception as e: | |
print(f"An error occurred: {e}") | |
return Response({'error': 'Something went wrong'}, status=500) | |
class TextLLMView(APIView): | |
def post(self, request, format=None): | |
try: | |
data = request.data | |
isOnline = data['isOnline'] | |
prompt = data['messages'][0]['prompt'] | |
# Specify model | |
#model = "pixtral-12b-2409" | |
model = data['model'] | |
# Define the messages for the chat | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{ | |
"type": "text", | |
"text": prompt | |
} | |
] | |
} | |
] | |
if(isOnline): | |
api_key = os.environ["MISTRAL_API_KEY"] | |
# Initialize the Mistral client | |
client = Mistral(api_key=api_key) | |
# Get the chat response | |
chat_response = client.chat.complete( | |
model=model, | |
messages=messages | |
) | |
content = chat_response.choices[0].message.content | |
else: | |
content = "helloWorld" | |
#print(chat_response.choices[0].message.content) | |
# Return the content of the response | |
return Response({"response": content}) | |
except Exception as e: | |
print(f"An error occurred: {e}") | |
return Response({'error': 'Something went wrong'}, status=500) | |
class IndicLLMView(APIView): | |
def post(self, request, format=None): | |
try: | |
data = request.data | |
isOnline = data['isOnline'] | |
print(isOnline) | |
prompt = data['messages'][0]['prompt'] | |
# Specify model | |
#model = "pixtral-12b-2409" | |
model = data['model'] | |
# Define the messages for the chat | |
client = Client(host='http://localhost:11434') | |
response = client.chat( | |
model=model, | |
messages=[{ | |
"role": "user", | |
"content": prompt, | |
}], | |
) | |
# Extract the model's response about the image | |
response_text = response['message']['content'].strip() | |
#print(chat_response.choices[0].message.content) | |
# Return the content of the response | |
return Response({"response": response_text}) | |
except Exception as e: | |
print(f"An error occurred: {e}") | |
return Response({'error': 'Something went wrong'}, status=500) | |
class LlamaVisionView(APIView): | |
def post(self, request, format=None): | |
try: | |
data = request.data | |
print("gere") | |
image_data = (data['messages'][0]['image'][0]) | |
prompt = data['messages'][0]['prompt'] | |
# Specify model | |
#model = "pixtral-12b-2409" | |
model = data['model'] | |
# Define the messages for the chat | |
# Define the messages for the chat | |
print("gere") | |
client = Client(host='http://localhost:21434') | |
response = client.chat( | |
model="x/llama3.2-vision:latest", | |
messages=[{ | |
"role": "user", | |
"content": prompt, | |
"images": [image_data] | |
}], | |
) | |
print("gere") | |
# Extract the model's response about the image | |
response_text = response['message']['content'].strip() | |
print(response_text) | |
content = response_text | |
print("gere") | |
#print(chat_response.choices[0].message.content) | |
# Return the content of the response | |
return Response({"response": content}) | |
except Exception as e: | |
print(f"An error occurred: {e}") | |
return Response({'error': 'Something went wrong'}, status=500) | |
class VisionLLMView(APIView): | |
def post(self, request, format=None): | |
try: | |
data = request.data | |
api_key = os.environ["MISTRAL_API_KEY"] | |
# Initialize the Mistral client | |
client = Mistral(api_key=api_key) | |
image_data = (data['messages'][0]['image'][0]) | |
prompt = data['messages'][0]['prompt'] | |
# Specify model | |
#model = "pixtral-12b-2409" | |
model = data['model'] | |
# Define the messages for the chat | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{ | |
"type": "text", | |
"text": prompt | |
}, | |
{ | |
"type": "image_url", | |
"image_url": f"data:image/jpeg;base64,{image_data}" | |
} | |
] | |
} | |
] | |
# Get the chat response | |
chat_response = client.chat.complete( | |
model=model, | |
messages=messages | |
) | |
content = chat_response.choices[0].message.content | |
#print(chat_response.choices[0].message.content) | |
# Return the content of the response | |
return Response({"response": content}) | |
except Exception as e: | |
print(f"An error occurred: {e}") | |
return Response({'error': 'Something went wrong'}, status=500) | |
class NIMVisionLLMView(APIView): | |
def post(self, request, format=None): | |
try: | |
invoke_url = "https://ai.api.nvidia.com/v1/gr/meta/llama-3.2-11b-vision-instruct/chat/completions" | |
stream = False | |
api_key = os.environ["NIM_API_KEY"] | |
data = request.data | |
model = data['model'] | |
print(model) | |
image_data = (data['messages'][0]['image'][0]) | |
prompt = data['messages'][0]['prompt'] | |
headers = { | |
"Authorization": f"Bearer {api_key}", | |
"Accept": "text/event-stream" if stream else "application/json" | |
} | |
payload = { | |
"model": model, | |
"messages": [ | |
{ | |
"role": "user", | |
"content": f'{prompt} <img src="data:image/png;base64,{image_data}" />' | |
} | |
], | |
"max_tokens": 512, | |
"temperature": 1.00, | |
"top_p": 1.00, | |
"stream": stream | |
} | |
response = requests.post(invoke_url, headers=headers, json=payload) | |
if stream: | |
for line in response.iter_lines(): | |
if line: | |
#print(line.decode("utf-8")) | |
data = line.decode("utf-8") | |
#content = json.loads(data)['choices'][0]['delta'].get('content', '') | |
else: | |
#print(response.json()) | |
data = response.json() | |
content = data['choices'][0]['message']['content'] | |
#print(content) | |
return Response({"response": content}) | |
except Exception as e: # Added general exception handling | |
print(f"An error occurred: {e}") | |
return Response({'error': 'Something went wrong'}, status=500) | |