Spaces:
Sleeping
Sleeping
from transformers import AutoTokenizer, AutoModelForCausalLM, TextGenerationPipeline | |
import gradio as gr | |
# Load the model and tokenizer | |
model = AutoModelForCausalLM.from_pretrained("sarvamai/sarvam-1") | |
tokenizer = AutoTokenizer.from_pretrained("sarvamai/sarvam-1") | |
tokenizer.pad_token_id = tokenizer.eos_token_id | |
# Create the text generation pipeline | |
pipe = TextGenerationPipeline(model=model, tokenizer=tokenizer, device="cuda", torch_dtype="bfloat16", return_full_text=False) | |
# Define prediction function | |
def generate_text(prompt): | |
return pipe(prompt)[0]['generated_text'] | |
# Set up Gradio interface | |
demo = gr.Interface( | |
fn=generate_text, | |
inputs=gr.Textbox(label="Enter your prompt"), | |
outputs=gr.Textbox(label="Generated text"), | |
title="Text Generation with Sarvam-1", | |
description="Enter a prompt to generate text using the Sarvam-1 model." | |
) | |
# Launch the demo | |
demo.launch(share=True) | |