Spaces:
Sleeping
Sleeping
import gradio as gr | |
from spiritlm.model.spiritlm_model import Spiritlm, OutputModality, GenerationInput, ContentType | |
from transformers import GenerationConfig | |
import torchaudio | |
import torch | |
import tempfile | |
import os | |
import numpy as np | |
# Initialize the Spirit LM model with the modified class | |
spirit_lm = Spiritlm("spirit-lm-base-7b") | |
def generate_output(input_type, input_content_text, input_content_audio, output_modality, temperature, top_p, max_new_tokens, do_sample, speaker_id): | |
generation_config = GenerationConfig( | |
temperature=temperature, | |
top_p=top_p, | |
max_new_tokens=max_new_tokens, | |
do_sample=do_sample, | |
) | |
if input_type == "text": | |
interleaved_inputs = [GenerationInput(content=input_content_text, content_type=ContentType.TEXT)] | |
elif input_type == "audio": | |
# Load audio file | |
waveform, sample_rate = torchaudio.load(input_content_audio) | |
interleaved_inputs = [GenerationInput(content=waveform.squeeze(0), content_type=ContentType.SPEECH)] | |
else: | |
raise ValueError("Invalid input type") | |
outputs = spirit_lm.generate( | |
interleaved_inputs=interleaved_inputs, | |
output_modality=OutputModality[output_modality.upper()], | |
generation_config=generation_config, | |
speaker_id=speaker_id, # Pass the selected speaker ID | |
) | |
text_output = "" | |
audio_output = None | |
for output in outputs: | |
if output.content_type == ContentType.TEXT: | |
text_output = output.content | |
elif output.content_type == ContentType.SPEECH: | |
# Ensure output.content is a NumPy array | |
if isinstance(output.content, np.ndarray): | |
# Debugging: Print shape and dtype of the audio data | |
print("Audio data shape:", output.content.shape) | |
print("Audio data dtype:", output.content.dtype) | |
# Ensure the audio data is in the correct format | |
if len(output.content.shape) == 1: | |
# Mono audio data | |
audio_data = torch.from_numpy(output.content).unsqueeze(0) | |
else: | |
# Stereo audio data | |
audio_data = torch.from_numpy(output.content) | |
# Save the audio content to a temporary file | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio_file: | |
torchaudio.save(temp_audio_file.name, audio_data, 16000) | |
audio_output = temp_audio_file.name | |
else: | |
raise TypeError("Expected output.content to be a NumPy array, but got {}".format(type(output.content))) | |
return text_output, audio_output | |
# Define the Gradio interface | |
iface = gr.Interface( | |
fn=generate_output, | |
inputs=[ | |
gr.Radio(["text", "audio"], label="Input Type", value="text"), | |
gr.Textbox(label="Input Content (Text)"), | |
gr.Audio(label="Input Content (Audio)", type="filepath"), | |
gr.Radio(["TEXT", "SPEECH", "ARBITRARY"], label="Output Modality", value="SPEECH"), | |
gr.Slider(0, 1, step=0.1, value=0.9, label="Temperature"), | |
gr.Slider(0, 1, step=0.05, value=0.95, label="Top P"), | |
gr.Slider(1, 800, step=1, value=500, label="Max New Tokens"), | |
gr.Checkbox(value=True, label="Do Sample"), | |
gr.Dropdown(choices=[0, 1, 2, 3], value=0, label="Speaker ID"), | |
], | |
outputs=[gr.Textbox(label="Generated Text"), gr.Audio(label="Generated Audio")], | |
title="Spirit LM WebUI Demo", | |
description="Demo for generating text or audio using the Spirit LM model.", | |
flagging_mode="never", | |
) | |
# Launch the interface | |
iface.launch() |