Spaces:
Runtime error
Runtime error
import os | |
import shutil | |
from app_modules.presets import * | |
from clc.langchain_application import LangChainApplication | |
# 修改成自己的配置!!! | |
class LangChainCFG: | |
llm_model_name = 'THUDM/chatglm-6b-int4-qe' # 本地模型文件 or huggingface远程仓库 | |
embedding_model_name = 'GanymedeNil/text2vec-large-chinese' # 检索模型文件 or huggingface远程仓库 | |
vector_store_path = './cache' | |
docs_path = './docs' | |
kg_vector_stores = { | |
'中文维基百科': './cache/zh_wikipedia', | |
'大规模金融研报': './cache/financial_research_reports', | |
'初始化': './cache', | |
} # 可以替换成自己的知识库,如果没有需要设置为None | |
# kg_vector_stores=None | |
patterns = ['模型问答', '知识库问答'] # | |
config = LangChainCFG() | |
application = LangChainApplication(config) | |
def get_file_list(): | |
if not os.path.exists("docs"): | |
return [] | |
return [f for f in os.listdir("docs")] | |
file_list = get_file_list() | |
def upload_file(file): | |
if not os.path.exists("docs"): | |
os.mkdir("docs") | |
filename = os.path.basename(file.name) | |
shutil.move(file.name, "docs/" + filename) | |
# file_list首位插入新上传的文件 | |
file_list.insert(0, filename) | |
application.source_service.add_document("docs/" + filename) | |
return gr.Dropdown.update(choices=file_list, value=filename) | |
def set_knowledge(kg_name, history): | |
try: | |
application.source_service.load_vector_store(config.kg_vector_stores[kg_name]) | |
msg_status = f'{kg_name}知识库已成功加载' | |
except Exception as e: | |
print(e) | |
msg_status = f'{kg_name}知识库未成功加载' | |
return history + [[None, msg_status]] | |
def clear_session(): | |
return '', None | |
def predict(input, | |
large_language_model, | |
embedding_model, | |
top_k, | |
use_web, | |
use_pattern, | |
history=None): | |
# print(large_language_model, embedding_model) | |
print(input) | |
if history == None: | |
history = [] | |
if use_web == '使用': | |
web_content = application.source_service.search_web(query=input) | |
else: | |
web_content = '' | |
search_text = '' | |
if use_pattern == '模型问答': | |
result = application.get_llm_answer(query=input, web_content=web_content) | |
history.append((input, result)) | |
search_text += web_content | |
return '', history, history, search_text | |
else: | |
resp = application.get_knowledge_based_answer( | |
query=input, | |
history_len=1, | |
temperature=0.1, | |
top_p=0.9, | |
top_k=top_k, | |
web_content=web_content, | |
chat_history=history | |
) | |
history.append((input, resp['result'])) | |
for idx, source in enumerate(resp['source_documents'][:4]): | |
sep = f'----------【搜索结果{idx + 1}:】---------------\n' | |
search_text += f'{sep}\n{source.page_content}\n\n' | |
print(search_text) | |
search_text += "----------【网络检索内容】-----------\n" | |
search_text += web_content | |
return '', history, history, search_text | |
with open("assets/custom.css", "r", encoding="utf-8") as f: | |
customCSS = f.read() | |
with gr.Blocks(css=customCSS, theme=small_and_beautiful_theme) as demo: | |
gr.Markdown("""<h1><center>Chinese-LangChain</center></h1> | |
<center><font size=3> | |
</center></font> | |
""") | |
state = gr.State() | |
with gr.Row(): | |
with gr.Column(scale=1): | |
embedding_model = gr.Dropdown([ | |
"text2vec-base" | |
], | |
label="Embedding model", | |
value="text2vec-base") | |
large_language_model = gr.Dropdown( | |
[ | |
"ChatGLM-6B-int4", | |
], | |
label="large language model", | |
value="ChatGLM-6B-int4") | |
top_k = gr.Slider(1, | |
20, | |
value=4, | |
step=1, | |
label="检索top-k文档", | |
interactive=True) | |
use_web = gr.Radio(["使用", "不使用"], label="web search", | |
info="是否使用网络搜索,使用时确保网络通常", | |
value="不使用" | |
) | |
use_pattern = gr.Radio( | |
[ | |
'模型问答', | |
'知识库问答', | |
], | |
label="模式", | |
value='模型问答', | |
interactive=True) | |
kg_name = gr.Radio(list(config.kg_vector_stores.keys()), | |
label="知识库", | |
value=None, | |
info="使用知识库问答,请加载知识库", | |
interactive=True) | |
set_kg_btn = gr.Button("加载知识库") | |
file = gr.File(label="将文件上传到知识库库,内容要尽量匹配", | |
visible=True, | |
file_types=['.txt', '.md', '.docx', '.pdf'] | |
) | |
with gr.Column(scale=4): | |
with gr.Row(): | |
chatbot = gr.Chatbot(label='Chinese-LangChain').style(height=400) | |
with gr.Row(): | |
message = gr.Textbox(label='请输入问题') | |
with gr.Row(): | |
clear_history = gr.Button("🧹 清除历史对话") | |
send = gr.Button("🚀 发送") | |
with gr.Row(): | |
gr.Markdown("""提醒:<br> | |
[Chinese-LangChain](https://github.com/yanqiangmiffy/Chinese-LangChain) <br> | |
有任何使用问题[Github Issue区](https://github.com/yanqiangmiffy/Chinese-LangChain)进行反馈. <br> | |
""") | |
with gr.Column(scale=2): | |
search = gr.Textbox(label='搜索结果') | |
# ============= 触发动作============= | |
file.upload(upload_file, | |
inputs=file, | |
outputs=None) | |
set_kg_btn.click( | |
set_knowledge, | |
show_progress=True, | |
inputs=[kg_name, chatbot], | |
outputs=chatbot | |
) | |
# 发送按钮 提交 | |
send.click(predict, | |
inputs=[ | |
message, | |
large_language_model, | |
embedding_model, | |
top_k, | |
use_web, | |
use_pattern, | |
state | |
], | |
outputs=[message, chatbot, state, search]) | |
# 清空历史对话按钮 提交 | |
clear_history.click(fn=clear_session, | |
inputs=[], | |
outputs=[chatbot, state], | |
queue=False) | |
# 输入框 回车 | |
message.submit(predict, | |
inputs=[ | |
message, | |
large_language_model, | |
embedding_model, | |
top_k, | |
use_web, | |
use_pattern, | |
state | |
], | |
outputs=[message, chatbot, state, search]) | |
demo.queue(concurrency_count=2).launch( | |
server_name='0.0.0.0', | |
share=False, | |
show_error=True, | |
debug=True, | |
enable_queue=True, | |
inbrowser=True, | |
) | |