Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,806 Bytes
d65c9b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
# Plug&Play Feature Injection
import torch
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from random import randrange
import PIL
import numpy as np
from tqdm import tqdm
from torch.cuda.amp import custom_bwd, custom_fwd
import torch.nn.functional as F
from diffusers import (
StableDiffusionXLPipeline,
StableDiffusionXLImg2ImgPipeline,
DDIMScheduler,
)
from diffusers.utils.torch_utils import randn_tensor
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import (
rescale_noise_cfg,
StableDiffusionXLPipelineOutput,
retrieve_timesteps,
PipelineImageInput
)
from src.eunms import Scheduler_Type, Gradient_Averaging_Type, Epsilon_Update_Type
from src.inversion_utils import noise_regularization
def _backward_ddim(x_tm1, alpha_t, alpha_tm1, eps_xt):
"""
let a = alpha_t, b = alpha_{t - 1}
We have a > b,
x_{t} - x_{t - 1} = sqrt(a) ((sqrt(1/b) - sqrt(1/a)) * x_{t-1} + (sqrt(1/a - 1) - sqrt(1/b - 1)) * eps_{t-1})
From https://arxiv.org/pdf/2105.05233.pdf, section F.
"""
a, b = alpha_t, alpha_tm1
sa = a**0.5
sb = b**0.5
return sa * ((1 / sb) * x_tm1 + ((1 / a - 1) ** 0.5 - (1 / b - 1) ** 0.5) * eps_xt)
class SDXLDDIMPipeline(StableDiffusionXLImg2ImgPipeline):
# @torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
image: PipelineImageInput = None,
strength: float = 0.3,
num_inversion_steps: int = 50,
timesteps: List[int] = None,
denoising_start: Optional[float] = None,
denoising_end: Optional[float] = None,
guidance_scale: float = 1.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
negative_prompt_2: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
ip_adapter_image: Optional[PipelineImageInput] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guidance_rescale: float = 0.0,
original_size: Tuple[int, int] = None,
crops_coords_top_left: Tuple[int, int] = (0, 0),
target_size: Tuple[int, int] = None,
negative_original_size: Optional[Tuple[int, int]] = None,
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
negative_target_size: Optional[Tuple[int, int]] = None,
aesthetic_score: float = 6.0,
negative_aesthetic_score: float = 2.5,
clip_skip: Optional[int] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
opt_lr: float = 0.001,
opt_iters: int = 1,
opt_none_inference_steps: bool = False,
opt_loss_kl_lambda: float = 10.0,
num_inference_steps: int = 50,
num_aprox_steps: int = 100,
**kwargs,
):
callback = kwargs.pop("callback", None)
callback_steps = kwargs.pop("callback_steps", None)
if callback is not None:
deprecate(
"callback",
"1.0.0",
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
)
if callback_steps is not None:
deprecate(
"callback_steps",
"1.0.0",
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
)
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
prompt_2,
strength,
num_inversion_steps,
callback_steps,
negative_prompt,
negative_prompt_2,
prompt_embeds,
negative_prompt_embeds,
callback_on_step_end_tensor_inputs,
)
denoising_start_fr = 1.0 - denoising_start
denoising_start = 0.0 if self.cfg.noise_friendly_inversion else denoising_start
self._guidance_scale = guidance_scale
self._guidance_rescale = guidance_rescale
self._clip_skip = clip_skip
self._cross_attention_kwargs = cross_attention_kwargs
self._denoising_end = denoising_end
self._denoising_start = denoising_start
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# 3. Encode input prompt
text_encoder_lora_scale = (
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
)
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
device=device,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=self.do_classifier_free_guidance,
negative_prompt=negative_prompt,
negative_prompt_2=negative_prompt_2,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
lora_scale=text_encoder_lora_scale,
clip_skip=self.clip_skip,
)
# 4. Preprocess image
image = self.image_processor.preprocess(image)
# 5. Prepare timesteps
def denoising_value_valid(dnv):
return isinstance(self.denoising_end, float) and 0 < dnv < 1
timesteps, num_inversion_steps = retrieve_timesteps(self.scheduler, num_inversion_steps, device, timesteps)
timesteps_num_inference_steps, num_inference_steps = retrieve_timesteps(self.scheduler_inference, num_inference_steps, device, None)
timesteps, num_inversion_steps = self.get_timesteps(
num_inversion_steps,
strength,
device,
denoising_start=self.denoising_start if denoising_value_valid else None,
)
# latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
# add_noise = True if self.denoising_start is None else False
# 6. Prepare latent variables
with torch.no_grad():
latents = self.prepare_latents(
image,
None,
batch_size,
num_images_per_prompt,
prompt_embeds.dtype,
device,
generator,
False,
)
# 7. Prepare extra step kwargs.
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
height, width = latents.shape[-2:]
height = height * self.vae_scale_factor
width = width * self.vae_scale_factor
original_size = original_size or (height, width)
target_size = target_size or (height, width)
# 8. Prepare added time ids & embeddings
if negative_original_size is None:
negative_original_size = original_size
if negative_target_size is None:
negative_target_size = target_size
add_text_embeds = pooled_prompt_embeds
if self.text_encoder_2 is None:
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
else:
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
add_time_ids, add_neg_time_ids = self._get_add_time_ids(
original_size,
crops_coords_top_left,
target_size,
aesthetic_score,
negative_aesthetic_score,
negative_original_size,
negative_crops_coords_top_left,
negative_target_size,
dtype=prompt_embeds.dtype,
text_encoder_projection_dim=text_encoder_projection_dim,
)
add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1)
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1)
add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0)
prompt_embeds = prompt_embeds.to(device)
add_text_embeds = add_text_embeds.to(device)
add_time_ids = add_time_ids.to(device)
if ip_adapter_image is not None:
image_embeds, negative_image_embeds = self.encode_image(ip_adapter_image, device, num_images_per_prompt)
if self.do_classifier_free_guidance:
image_embeds = torch.cat([negative_image_embeds, image_embeds])
image_embeds = image_embeds.to(device)
# 9. Denoising loop
num_warmup_steps = max(len(timesteps) - num_inversion_steps * self.scheduler.order, 0)
prev_timestep = None
self._num_timesteps = len(timesteps)
self.prev_z = torch.clone(latents)
self.prev_z4 = torch.clone(latents)
self.z_0 = torch.clone(latents)
g_cpu = torch.Generator().manual_seed(7865)
self.noise = randn_tensor(self.z_0.shape, generator=g_cpu, device=self.z_0.device, dtype=self.z_0.dtype)
# Friendly inversion params
timesteps_for = timesteps if self.cfg.noise_friendly_inversion else reversed(timesteps)
noise = randn_tensor(latents.shape, generator=g_cpu, device=latents.device, dtype=latents.dtype)
latents = self.scheduler.add_noise(self.z_0, noise, timesteps_for[0].view((1))).detach() if self.cfg.noise_friendly_inversion else latents
z_T = latents.clone()
all_latents = [latents.clone()]
with self.progress_bar(total=num_inversion_steps) as progress_bar:
for i, t in enumerate(timesteps_for):
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
if ip_adapter_image is not None:
added_cond_kwargs["image_embeds"] = image_embeds
z_tp1 = self.inversion_step(latents,
t,
prompt_embeds,
added_cond_kwargs,
prev_timestep=prev_timestep,
num_aprox_steps=num_aprox_steps)
prev_timestep = t
latents = z_tp1
all_latents.append(latents.clone())
if self.cfg.noise_friendly_inversion and t.item() > 1000 * denoising_start_fr:
z_T = latents.clone()
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
negative_pooled_prompt_embeds = callback_outputs.pop(
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
)
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
add_neg_time_ids = callback_outputs.pop("add_neg_time_ids", add_neg_time_ids)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents)
if self.cfg.noise_friendly_inversion:
latents = z_T
image = latents
# Offload all models
self.maybe_free_model_hooks()
return StableDiffusionXLPipelineOutput(images=image), all_latents
# @torch.no_grad()
def inversion_step(
self,
z_t: torch.tensor,
t: torch.tensor,
prompt_embeds,
added_cond_kwargs,
prev_timestep: Optional[torch.tensor] = None,
num_aprox_steps: int = 100
) -> torch.tensor:
extra_step_kwargs = {}
avg_range = self.cfg.gradient_averaging_first_step_range if t.item() < 250 else self.cfg.gradient_averaging_step_range
num_aprox_steps = min(self.cfg.max_num_aprox_steps_first_step, num_aprox_steps) if t.item() < 250 else num_aprox_steps
nosie_pred_avg = None
z_tp1_forward = self.scheduler.add_noise(self.z_0, self.noise, t.view((1))).detach()
noise_pred_optimal = None
approximated_z_tp1 = z_t.clone()
for i in range(num_aprox_steps + 1):
with torch.no_grad():
if self.cfg.num_reg_steps > 0 and i == 0:
approximated_z_tp1 = torch.cat([z_tp1_forward, approximated_z_tp1])
prompt_embeds_in = torch.cat([prompt_embeds, prompt_embeds])
added_cond_kwargs_in = {}
added_cond_kwargs_in['text_embeds'] = torch.cat([added_cond_kwargs['text_embeds'], added_cond_kwargs['text_embeds']])
added_cond_kwargs_in['time_ids'] = torch.cat([added_cond_kwargs['time_ids'], added_cond_kwargs['time_ids']])
else:
prompt_embeds_in = prompt_embeds
added_cond_kwargs_in = added_cond_kwargs
noise_pred = self.unet_pass(approximated_z_tp1, t, prompt_embeds_in, added_cond_kwargs_in)
if self.cfg.num_reg_steps > 0 and i == 0:
noise_pred_optimal, noise_pred = noise_pred.chunk(2)
noise_pred_optimal = noise_pred_optimal.detach()
# perform guidance
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
# Calculate average noise
if i >= avg_range[0] and i < avg_range[1]:
j = i - avg_range[0]
if nosie_pred_avg is None:
nosie_pred_avg = noise_pred.clone()
else:
nosie_pred_avg = j * nosie_pred_avg / (j + 1) + noise_pred / (j + 1)
if i >= avg_range[0] or (self.cfg.gradient_averaging_type == Gradient_Averaging_Type.NONE and i > 0):
noise_pred = noise_regularization(noise_pred, noise_pred_optimal, lambda_kl=self.cfg.lambda_kl, lambda_ac=self.cfg.lambda_ac, num_reg_steps=self.cfg.num_reg_steps, num_ac_rolls=self.cfg.num_ac_rolls)
approximated_z_tp1 = self.backward_step(noise_pred, t, z_t, prev_timestep)
if self.cfg.gradient_averaging_type == Gradient_Averaging_Type.ON_END and nosie_pred_avg is not None:
nosie_pred_avg = noise_regularization(nosie_pred_avg, noise_pred_optimal, lambda_kl=self.cfg.lambda_kl, lambda_ac=self.cfg.lambda_ac, num_reg_steps=self.cfg.num_reg_steps, num_ac_rolls=self.cfg.num_ac_rolls)
approximated_z_tp1 = self.backward_step(nosie_pred_avg, t, z_t, prev_timestep)
if self.cfg.update_epsilon_type != Epsilon_Update_Type.NONE:
noise_pred = self.unet_pass(approximated_z_tp1, t, prompt_embeds, added_cond_kwargs)
# perform guidance
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
self.scheduler.step_and_update_noise(noise_pred, t, approximated_z_tp1, z_t, return_dict=False, update_epsilon_type=self.cfg.update_epsilon_type)
return approximated_z_tp1
@torch.no_grad()
def unet_pass(self, z_t, t, prompt_embeds, added_cond_kwargs):
latent_model_input = torch.cat([z_t] * 2) if self.do_classifier_free_guidance else z_t
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
return self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
timestep_cond=None,
cross_attention_kwargs=self.cross_attention_kwargs,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
@torch.no_grad()
def backward_step(self, nosie_pred, t, z_t, prev_timestep):
extra_step_kwargs = {}
if self.cfg.scheduler_type == Scheduler_Type.EULER or self.cfg.scheduler_type == Scheduler_Type.LCM:
return self.scheduler.inv_step(nosie_pred, t, z_t, **extra_step_kwargs, return_dict=False)[0].detach()
else:
alpha_prod_t = self.scheduler.alphas_cumprod[t]
alpha_prod_t_prev = (
self.scheduler.alphas_cumprod[prev_timestep]
if prev_timestep is not None
else self.scheduler.final_alpha_cumprod
)
return _backward_ddim(
x_tm1=z_t,
alpha_t=alpha_prod_t,
alpha_tm1=alpha_prod_t_prev,
eps_xt=nosie_pred,
)
|