Adrien Banse
commited on
Commit
ยท
d23d1fc
1
Parent(s):
bb4818f
feat: custom number of parameters
Browse files
README.md
CHANGED
@@ -28,6 +28,8 @@ To do:
|
|
28 |
- [X] Follow us on LinkedIn
|
29 |
- Share the results of a simulation (e.g. export an image generated with plotly for instance?)
|
30 |
- [x] Add an advanced/expert tab
|
31 |
-
- True number of tokens
|
32 |
-
- Expose more inputs like the electricity mix
|
|
|
|
|
33 |
- [ ] Idea : "estimate a given prompt impact" function which allows to enter a prompt in a text field and estimate its impacts
|
|
|
28 |
- [X] Follow us on LinkedIn
|
29 |
- Share the results of a simulation (e.g. export an image generated with plotly for instance?)
|
30 |
- [x] Add an advanced/expert tab
|
31 |
+
- [x] True number of tokens
|
32 |
+
- [x] Expose more inputs like the electricity mix
|
33 |
+
- [ ] Examples of electricity mixes
|
34 |
+
- [x] Custom number of parameters
|
35 |
- [ ] Idea : "estimate a given prompt impact" function which allows to enter a prompt in a text field and estimate its impacts
|
app.py
CHANGED
@@ -28,7 +28,7 @@ MODELS = [
|
|
28 |
("Anthropic / Claude 3 Sonnet", "anthropic/claude-3-sonnet-20240229"),
|
29 |
("Anthropic / Claude 3 Haiku", "anthropic/claude-3-haiku-20240307"),
|
30 |
("Anthropic / Claude 2.1", "anthropic/claude-2.1"),
|
31 |
-
("Anthropic / Claude 2", "anthropic/claude-2"),
|
32 |
("Anthropic / Claude Instant 1.2", "anthropic/claude-instant-1.2"),
|
33 |
("Mistral AI / Mistral 7B", "mistralai/open-mistral-7b"),
|
34 |
("Mistral AI / Mixtral 8x7B", "mistralai/open-mixtral-8x7b"),
|
@@ -67,7 +67,6 @@ def format_indicator(name: str, value: str, unit: str) -> str:
|
|
67 |
|
68 |
|
69 |
def form_output(impacts):
|
70 |
-
|
71 |
energy_ = q(impacts.energy.value, impacts.energy.unit)
|
72 |
eq_energy_ = q(impacts.energy.value * 2, 'km')
|
73 |
if energy_ < q("1 kWh"):
|
@@ -90,8 +89,8 @@ def form_output(impacts):
|
|
90 |
format_indicator("๐ GHG Emissions", f"{gwp_.magnitude:.3g}", gwp_.units),
|
91 |
format_indicator("๐ชจ Abiotic Resources", f"{adpe_.magnitude:.3g}", adpe_.units),
|
92 |
format_indicator("โฝ๏ธ Primary Energy", f"{pe_.magnitude:.3g}", pe_.units),
|
93 |
-
format_indicator("๐ Equivalent energy
|
94 |
-
format_indicator("๐ฐ Equivalent emissions for 1000 prompts
|
95 |
)
|
96 |
|
97 |
|
@@ -110,16 +109,13 @@ def form(
|
|
110 |
|
111 |
|
112 |
def form_expert(
|
113 |
-
|
|
|
114 |
prompt_generated_tokens: int,
|
115 |
mix_gwp: float,
|
116 |
mix_adpe: float,
|
117 |
mix_pe: float
|
118 |
-
):
|
119 |
-
provider, model_name = model_name.split('/', 1)
|
120 |
-
model = models.find_model(provider=provider, model_name=model_name)
|
121 |
-
model_active_params = model.active_parameters or _avg(model.active_parameters_range) # TODO: handle ranges
|
122 |
-
model_total_params = model.total_parameters or _avg(model.total_parameters_range)
|
123 |
impacts = compute_llm_impacts_expert(
|
124 |
model_active_parameter_count=model_active_params,
|
125 |
model_total_parameter_count=model_total_params,
|
@@ -132,10 +128,27 @@ def form_expert(
|
|
132 |
return form_output(impacts)
|
133 |
|
134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
with gr.Blocks() as demo:
|
136 |
|
137 |
### TITLE
|
138 |
-
|
139 |
gr.Markdown("""
|
140 |
# ๐ฑ EcoLogits Calculator
|
141 |
|
@@ -144,7 +157,7 @@ with gr.Blocks() as demo:
|
|
144 |
|
145 |
Read the documentation:
|
146 |
[ecologits.ai](https://ecologits.ai) | โญ๏ธ us on GitHub: [genai-impact/ecologits](https://github.com/genai-impact/ecologits) |
|
147 |
-
Follow us on Linkedin
|
148 |
""")
|
149 |
|
150 |
### SIMPLE CALCULATOR
|
@@ -159,7 +172,7 @@ with gr.Blocks() as demo:
|
|
159 |
label="Model name",
|
160 |
value="openai/gpt-3.5-turbo",
|
161 |
filterable=True,
|
162 |
-
)
|
163 |
prompt = gr.Dropdown(
|
164 |
PROMPTS,
|
165 |
label="Example prompt",
|
@@ -205,11 +218,28 @@ with gr.Blocks() as demo:
|
|
205 |
## ๐ค Expert mode
|
206 |
""")
|
207 |
model = gr.Dropdown(
|
208 |
-
MODELS,
|
209 |
label="Model name",
|
210 |
value="openai/gpt-3.5-turbo",
|
211 |
filterable=True,
|
|
|
212 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
tokens = gr.Number(
|
214 |
label="Output tokens",
|
215 |
value=100
|
@@ -248,13 +278,13 @@ with gr.Blocks() as demo:
|
|
248 |
submit_btn = gr.Button("Submit")
|
249 |
submit_btn.click(
|
250 |
fn=form_expert,
|
251 |
-
inputs=[
|
252 |
outputs=[energy, gwp, adpe, pe]
|
253 |
)
|
254 |
|
255 |
### METHOD QUICK EXPLANATION
|
256 |
with gr.Tab('Methodology'):
|
257 |
-
gr.Markdown("""
|
258 |
|
259 |
### INFORMATION ABOUT INDICATORS
|
260 |
with gr.Accordion("๐ More about the indicators", open = False):
|
@@ -269,20 +299,20 @@ with gr.Blocks() as demo:
|
|
269 |
with gr.Accordion("๐ How to reduce / limit these impacts ?", open = False):
|
270 |
gr.Markdown("""
|
271 |
|
272 |
-
* โ **Fundamental rule
|
273 |
-
* Questionning the usefulness of the project
|
274 |
-
* Estimating impacts of the project
|
275 |
-
* Evaluating the project purpose
|
276 |
-
* Restricting the use case to the desired purposes
|
277 |
|
278 |
-
* ๐ฆพ On the hardware side
|
279 |
-
* If you can, try to relocate the computing in low emissions and/or energy efficient datacenters
|
280 |
|
281 |
* ๐ค On the ML side :
|
282 |
-
* Develop a zero-shot learning approach for general tasks
|
283 |
-
* Prefer the smaller and yet well-peforming models (using number of parameters for example)
|
284 |
-
* If a specialization is needed, always prefer fine-tuning an existing model than re-training one from scratch
|
285 |
-
* During model inference, try caching the most popular prompts ("hey, tell me a joke about ...")
|
286 |
|
287 |
""")
|
288 |
|
|
|
28 |
("Anthropic / Claude 3 Sonnet", "anthropic/claude-3-sonnet-20240229"),
|
29 |
("Anthropic / Claude 3 Haiku", "anthropic/claude-3-haiku-20240307"),
|
30 |
("Anthropic / Claude 2.1", "anthropic/claude-2.1"),
|
31 |
+
("Anthropic / Claude 2.0", "anthropic/claude-2.0"),
|
32 |
("Anthropic / Claude Instant 1.2", "anthropic/claude-instant-1.2"),
|
33 |
("Mistral AI / Mistral 7B", "mistralai/open-mistral-7b"),
|
34 |
("Mistral AI / Mixtral 8x7B", "mistralai/open-mixtral-8x7b"),
|
|
|
67 |
|
68 |
|
69 |
def form_output(impacts):
|
|
|
70 |
energy_ = q(impacts.energy.value, impacts.energy.unit)
|
71 |
eq_energy_ = q(impacts.energy.value * 2, 'km')
|
72 |
if energy_ < q("1 kWh"):
|
|
|
89 |
format_indicator("๐ GHG Emissions", f"{gwp_.magnitude:.3g}", gwp_.units),
|
90 |
format_indicator("๐ชจ Abiotic Resources", f"{adpe_.magnitude:.3g}", adpe_.units),
|
91 |
format_indicator("โฝ๏ธ Primary Energy", f"{pe_.magnitude:.3g}", pe_.units),
|
92 |
+
format_indicator("๐ Equivalent energy: distance with a small electric car", f"{eq_energy_.magnitude:.3g}", eq_energy_.units),
|
93 |
+
format_indicator("๐ฐ Equivalent emissions for 1000 prompts: watching GoT in streaming", f"{eq_gwp_.magnitude:.3g}", eq_gwp_.units)
|
94 |
)
|
95 |
|
96 |
|
|
|
109 |
|
110 |
|
111 |
def form_expert(
|
112 |
+
model_active_params: float,
|
113 |
+
model_total_params: float,
|
114 |
prompt_generated_tokens: int,
|
115 |
mix_gwp: float,
|
116 |
mix_adpe: float,
|
117 |
mix_pe: float
|
118 |
+
):
|
|
|
|
|
|
|
|
|
119 |
impacts = compute_llm_impacts_expert(
|
120 |
model_active_parameter_count=model_active_params,
|
121 |
model_total_parameter_count=model_total_params,
|
|
|
128 |
return form_output(impacts)
|
129 |
|
130 |
|
131 |
+
CUSTOM = "Custom"
|
132 |
+
def custom():
|
133 |
+
return CUSTOM
|
134 |
+
|
135 |
+
def model_active_params_fn(model_name: str, n_param: float):
|
136 |
+
if model_name == CUSTOM:
|
137 |
+
return n_param
|
138 |
+
provider, model_name = model_name.split('/', 1)
|
139 |
+
model = models.find_model(provider=provider, model_name=model_name)
|
140 |
+
return model.active_parameters or _avg(model.active_parameters_range)
|
141 |
+
|
142 |
+
def model_total_params_fn(model_name: str, n_param: float):
|
143 |
+
if model_name == CUSTOM:
|
144 |
+
return n_param
|
145 |
+
provider, model_name = model_name.split('/', 1)
|
146 |
+
model = models.find_model(provider=provider, model_name=model_name)
|
147 |
+
return model.total_parameters or _avg(model.total_parameters_range)
|
148 |
+
|
149 |
with gr.Blocks() as demo:
|
150 |
|
151 |
### TITLE
|
|
|
152 |
gr.Markdown("""
|
153 |
# ๐ฑ EcoLogits Calculator
|
154 |
|
|
|
157 |
|
158 |
Read the documentation:
|
159 |
[ecologits.ai](https://ecologits.ai) | โญ๏ธ us on GitHub: [genai-impact/ecologits](https://github.com/genai-impact/ecologits) |
|
160 |
+
โ
Follow us on Linkedin: [GenAI Impact](https://www.linkedin.com/company/genai-impact/posts/?feedView=all)
|
161 |
""")
|
162 |
|
163 |
### SIMPLE CALCULATOR
|
|
|
172 |
label="Model name",
|
173 |
value="openai/gpt-3.5-turbo",
|
174 |
filterable=True,
|
175 |
+
)
|
176 |
prompt = gr.Dropdown(
|
177 |
PROMPTS,
|
178 |
label="Example prompt",
|
|
|
218 |
## ๐ค Expert mode
|
219 |
""")
|
220 |
model = gr.Dropdown(
|
221 |
+
MODELS + [CUSTOM],
|
222 |
label="Model name",
|
223 |
value="openai/gpt-3.5-turbo",
|
224 |
filterable=True,
|
225 |
+
interactive=True
|
226 |
)
|
227 |
+
model_active_params = gr.Number(
|
228 |
+
label="Number of millions of active parameters",
|
229 |
+
value=45.0,
|
230 |
+
interactive=True
|
231 |
+
)
|
232 |
+
model_total_params = gr.Number(
|
233 |
+
label="Number of millions of total parameters",
|
234 |
+
value=45.0,
|
235 |
+
interactive=True
|
236 |
+
)
|
237 |
+
|
238 |
+
model.change(fn=model_active_params_fn, inputs=[model, model_active_params], outputs=[model_active_params])
|
239 |
+
model.change(fn=model_total_params_fn, inputs=[model, model_total_params], outputs=[model_total_params])
|
240 |
+
model_active_params.input(fn=custom, outputs=[model])
|
241 |
+
model_total_params.input(fn=custom, outputs=[model])
|
242 |
+
|
243 |
tokens = gr.Number(
|
244 |
label="Output tokens",
|
245 |
value=100
|
|
|
278 |
submit_btn = gr.Button("Submit")
|
279 |
submit_btn.click(
|
280 |
fn=form_expert,
|
281 |
+
inputs=[model_active_params, model_total_params, tokens, mix_gwp, mix_adpe, mix_pe],
|
282 |
outputs=[energy, gwp, adpe, pe]
|
283 |
)
|
284 |
|
285 |
### METHOD QUICK EXPLANATION
|
286 |
with gr.Tab('Methodology'):
|
287 |
+
gr.Markdown("""๐ Coming soon""")
|
288 |
|
289 |
### INFORMATION ABOUT INDICATORS
|
290 |
with gr.Accordion("๐ More about the indicators", open = False):
|
|
|
299 |
with gr.Accordion("๐ How to reduce / limit these impacts ?", open = False):
|
300 |
gr.Markdown("""
|
301 |
|
302 |
+
* โ **Fundamental rule**: Show **sobriety** on the uses of (generative) AI
|
303 |
+
* Questionning the usefulness of the project;
|
304 |
+
* Estimating impacts of the project;
|
305 |
+
* Evaluating the project purpose;
|
306 |
+
* Restricting the use case to the desired purposes.
|
307 |
|
308 |
+
* ๐ฆพ On the hardware side
|
309 |
+
* If you can, try to relocate the computing in low emissions and/or energy efficient datacenters.
|
310 |
|
311 |
* ๐ค On the ML side :
|
312 |
+
* Develop a zero-shot learning approach for general tasks;
|
313 |
+
* Prefer the smaller and yet well-peforming models (using number of parameters for example);
|
314 |
+
* If a specialization is needed, always prefer fine-tuning an existing model than re-training one from scratch;
|
315 |
+
* During model inference, try caching the most popular prompts ("hey, tell me a joke about ...").
|
316 |
|
317 |
""")
|
318 |
|