fix: small plot
Browse files
app.py
CHANGED
@@ -1,546 +1,549 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
|
3 |
-
import requests
|
4 |
-
from bs4 import BeautifulSoup
|
5 |
-
|
6 |
-
import tiktoken
|
7 |
-
|
8 |
-
from ecologits.tracers.utils import compute_llm_impacts, _avg
|
9 |
-
from ecologits.impacts.llm import compute_llm_impacts as compute_llm_impacts_expert
|
10 |
-
from ecologits.impacts.llm import IF_ELECTRICITY_MIX_GWP, IF_ELECTRICITY_MIX_ADPE, IF_ELECTRICITY_MIX_PE
|
11 |
-
from ecologits.model_repository import models
|
12 |
-
|
13 |
-
from src.assets import custom_css
|
14 |
-
from src.electricity_mix import COUNTRY_CODES, find_electricity_mix
|
15 |
-
from src.content import (
|
16 |
-
HERO_TEXT,
|
17 |
-
ABOUT_TEXT,
|
18 |
-
CITATION_LABEL,
|
19 |
-
CITATION_TEXT,
|
20 |
-
LICENCE_TEXT, METHODOLOGY_TEXT
|
21 |
-
)
|
22 |
-
from src.constants import (
|
23 |
-
PROVIDERS,
|
24 |
-
OPENAI_MODELS,
|
25 |
-
ANTHROPIC_MODELS,
|
26 |
-
COHERE_MODELS,
|
27 |
-
META_MODELS,
|
28 |
-
MISTRALAI_MODELS,
|
29 |
-
PROMPTS,
|
30 |
-
CLOSED_SOURCE_MODELS,
|
31 |
-
MODELS,
|
32 |
-
)
|
33 |
-
from src.utils import (
|
34 |
-
format_impacts,
|
35 |
-
format_impacts_expert,
|
36 |
-
format_energy_eq_physical_activity,
|
37 |
-
PhysicalActivity,
|
38 |
-
format_energy_eq_electric_vehicle,
|
39 |
-
format_gwp_eq_streaming, format_energy_eq_electricity_production, EnergyProduction,
|
40 |
-
format_gwp_eq_airplane_paris_nyc, format_energy_eq_electricity_consumption_ireland,
|
41 |
-
df_elec_mix_for_plot
|
42 |
-
)
|
43 |
-
|
44 |
-
CUSTOM = "Custom"
|
45 |
-
|
46 |
-
tokenizer = tiktoken.get_encoding('cl100k_base')
|
47 |
-
|
48 |
-
def model_list(provider: str) -> gr.Dropdown:
|
49 |
-
if provider == "openai":
|
50 |
-
return gr.Dropdown(
|
51 |
-
OPENAI_MODELS,
|
52 |
-
label="Model",
|
53 |
-
value=OPENAI_MODELS[0][1],
|
54 |
-
filterable=True,
|
55 |
-
)
|
56 |
-
elif provider == "anthropic":
|
57 |
-
return gr.Dropdown(
|
58 |
-
ANTHROPIC_MODELS,
|
59 |
-
label="Model",
|
60 |
-
value=ANTHROPIC_MODELS[0][1],
|
61 |
-
filterable=True,
|
62 |
-
)
|
63 |
-
elif provider == "cohere":
|
64 |
-
return gr.Dropdown(
|
65 |
-
COHERE_MODELS,
|
66 |
-
label="Model",
|
67 |
-
value=COHERE_MODELS[0][1],
|
68 |
-
filterable=True,
|
69 |
-
)
|
70 |
-
elif provider == "huggingface_hub/meta":
|
71 |
-
return gr.Dropdown(
|
72 |
-
META_MODELS,
|
73 |
-
label="Model",
|
74 |
-
value=META_MODELS[0][1],
|
75 |
-
filterable=True,
|
76 |
-
)
|
77 |
-
elif provider == "mistralai":
|
78 |
-
return gr.Dropdown(
|
79 |
-
MISTRALAI_MODELS,
|
80 |
-
label="Model",
|
81 |
-
value=MISTRALAI_MODELS[0][1],
|
82 |
-
filterable=True,
|
83 |
-
)
|
84 |
-
|
85 |
-
|
86 |
-
def custom():
|
87 |
-
return CUSTOM
|
88 |
-
|
89 |
-
def tiktoken_len(text):
|
90 |
-
tokens = tokenizer.encode(
|
91 |
-
text,
|
92 |
-
disallowed_special=()
|
93 |
-
)
|
94 |
-
return len(tokens)
|
95 |
-
|
96 |
-
def model_active_params_fn(model_name: str, n_param: float):
|
97 |
-
if model_name == CUSTOM:
|
98 |
-
return n_param
|
99 |
-
provider, model_name = model_name.split('/', 1)
|
100 |
-
model = models.find_model(provider=provider, model_name=model_name)
|
101 |
-
return model.active_parameters or _avg(model.active_parameters_range)
|
102 |
-
|
103 |
-
|
104 |
-
def model_total_params_fn(model_name: str, n_param: float):
|
105 |
-
if model_name == CUSTOM:
|
106 |
-
return n_param
|
107 |
-
provider, model_name = model_name.split('/', 1)
|
108 |
-
model = models.find_model(provider=provider, model_name=model_name)
|
109 |
-
return model.total_parameters or _avg(model.total_parameters_range)
|
110 |
-
|
111 |
-
|
112 |
-
def mix_fn(country_code: str, mix_adpe: float, mix_pe: float, mix_gwp: float):
|
113 |
-
if country_code == CUSTOM:
|
114 |
-
return mix_adpe, mix_pe, mix_gwp
|
115 |
-
return find_electricity_mix(country_code)
|
116 |
-
|
117 |
-
with gr.Blocks(css=custom_css) as demo:
|
118 |
-
gr.Markdown(HERO_TEXT)
|
119 |
-
|
120 |
-
with gr.Tab("🧮 Calculator"):
|
121 |
-
with gr.Row():
|
122 |
-
gr.Markdown("# Estimate the environmental impacts of LLM inference")
|
123 |
-
with gr.Row():
|
124 |
-
input_provider = gr.Dropdown(
|
125 |
-
PROVIDERS,
|
126 |
-
label="Provider",
|
127 |
-
value=PROVIDERS[0][1],
|
128 |
-
filterable=True,
|
129 |
-
)
|
130 |
-
|
131 |
-
input_model = gr.Dropdown(
|
132 |
-
OPENAI_MODELS,
|
133 |
-
label="Model",
|
134 |
-
value=OPENAI_MODELS[0][1],
|
135 |
-
filterable=True,
|
136 |
-
)
|
137 |
-
input_provider.change(model_list, input_provider, input_model)
|
138 |
-
|
139 |
-
input_prompt = gr.Dropdown(
|
140 |
-
PROMPTS,
|
141 |
-
label="Example prompt",
|
142 |
-
value=400,
|
143 |
-
)
|
144 |
-
|
145 |
-
|
146 |
-
@gr.render(inputs=[input_provider, input_model, input_prompt])
|
147 |
-
def render_simple(provider, model, prompt):
|
148 |
-
if provider.startswith("huggingface_hub"):
|
149 |
-
provider = provider.split("/")[0]
|
150 |
-
if models.find_model(provider, model) is not None:
|
151 |
-
impacts = compute_llm_impacts(
|
152 |
-
provider=provider,
|
153 |
-
model_name=model,
|
154 |
-
output_token_count=prompt,
|
155 |
-
request_latency=100000
|
156 |
-
)
|
157 |
-
impacts = format_impacts(impacts)
|
158 |
-
|
159 |
-
# Inference impacts
|
160 |
-
with gr.Blocks():
|
161 |
-
if f"{provider}/{model}" in CLOSED_SOURCE_MODELS:
|
162 |
-
with gr.Row():
|
163 |
-
gr.Markdown("""<p> ⚠️ You have selected a closed-source model. Please be aware that
|
164 |
-
some providers do not fully disclose information about such models. Consequently, our
|
165 |
-
estimates have a lower precision for closed-source models. For further details, refer to
|
166 |
-
our FAQ in the About section.
|
167 |
-
</p>""", elem_classes="warning-box")
|
168 |
-
|
169 |
-
with gr.Row():
|
170 |
-
gr.Markdown("""
|
171 |
-
## Environmental impacts
|
172 |
-
|
173 |
-
To understand how the environmental impacts are computed go to the 📖 Methodology tab.
|
174 |
-
""")
|
175 |
-
with gr.Row():
|
176 |
-
with gr.Column(scale=1, min_width=220):
|
177 |
-
gr.Markdown(f"""
|
178 |
-
<h2 align="center">⚡️ Energy</h2>
|
179 |
-
$$ \Large {impacts.energy.magnitude:.3g} \ \large {impacts.energy.units} $$
|
180 |
-
<p align="center"><i>Evaluates the electricity consumption<i></p><br>
|
181 |
-
""")
|
182 |
-
with gr.Column(scale=1, min_width=220):
|
183 |
-
gr.Markdown(f"""
|
184 |
-
<h2 align="center">🌍️ GHG Emissions</h2>
|
185 |
-
$$ \Large {impacts.gwp.magnitude:.3g} \ \large {impacts.gwp.units} $$
|
186 |
-
<p align="center"><i>Evaluates the effect on global warming<i></p><br>
|
187 |
-
""")
|
188 |
-
with gr.Column(scale=1, min_width=220):
|
189 |
-
gr.Markdown(f"""
|
190 |
-
<h2 align="center">🪨 Abiotic Resources</h2>
|
191 |
-
$$ \Large {impacts.adpe.magnitude:.3g} \ \large {impacts.adpe.units} $$
|
192 |
-
<p align="center"><i>Evaluates the use of metals and minerals<i></p><br>
|
193 |
-
""")
|
194 |
-
with gr.Column(scale=1, min_width=220):
|
195 |
-
gr.Markdown(f"""
|
196 |
-
<h2 align="center">⛽️ Primary Energy</h2>
|
197 |
-
$$ \Large {impacts.pe.magnitude:.3g} \ \large {impacts.pe.units} $$
|
198 |
-
<p align="center"><i>Evaluates the use of energy resources<i></p><br>
|
199 |
-
""")
|
200 |
-
|
201 |
-
# Impacts equivalents
|
202 |
-
with gr.Blocks():
|
203 |
-
with gr.Row():
|
204 |
-
gr.Markdown("""
|
205 |
-
---
|
206 |
-
## That's equivalent to...
|
207 |
-
|
208 |
-
Making this request to the LLM is equivalent to the following actions.
|
209 |
-
""")
|
210 |
-
with gr.Row():
|
211 |
-
physical_activity, distance = format_energy_eq_physical_activity(impacts.energy)
|
212 |
-
if physical_activity == PhysicalActivity.WALKING:
|
213 |
-
physical_activity = "🚶 " + physical_activity.capitalize()
|
214 |
-
if physical_activity == PhysicalActivity.RUNNING:
|
215 |
-
physical_activity = "🏃 " + physical_activity.capitalize()
|
216 |
-
with gr.Column(scale=1, min_width=300):
|
217 |
-
gr.Markdown(f"""
|
218 |
-
<h2 align="center">{physical_activity} $$ \Large {distance.magnitude:.3g}\ {distance.units} $$ </h2>
|
219 |
-
<p align="center"><i>Based on energy consumption<i></p><br>
|
220 |
-
""", latex_delimiters=[{"left": "$$", "right": "$$", "display": False}])
|
221 |
-
|
222 |
-
ev_eq = format_energy_eq_electric_vehicle(impacts.energy)
|
223 |
-
with gr.Column(scale=1, min_width=300):
|
224 |
-
gr.Markdown(f"""
|
225 |
-
<h2 align="center">🔋 Electric Vehicle $$ \Large {ev_eq.magnitude:.3g}\ {ev_eq.units} $$ </h2>
|
226 |
-
<p align="center"><i>Based on energy consumption<i></p><br>
|
227 |
-
""", latex_delimiters=[{"left": "$$", "right": "$$", "display": False}])
|
228 |
-
|
229 |
-
streaming_eq = format_gwp_eq_streaming(impacts.gwp)
|
230 |
-
with gr.Column(scale=1, min_width=300):
|
231 |
-
gr.Markdown(f"""
|
232 |
-
<h2 align="center">⏯️ Streaming $$ \Large {streaming_eq.magnitude:.3g}\ {streaming_eq.units} $$ </h2>
|
233 |
-
<p align="center"><i>Based on GHG emissions<i></p><br>
|
234 |
-
""", latex_delimiters=[{"left": "$$", "right": "$$", "display": False}])
|
235 |
-
|
236 |
-
# Bigger scale impacts equivalent
|
237 |
-
with gr.Blocks():
|
238 |
-
with gr.Row():
|
239 |
-
gr.Markdown("""
|
240 |
-
## What if 1% of the planet does this request everyday for 1 year?
|
241 |
-
|
242 |
-
If this use case is largely deployed around the world the equivalent impacts would be. (The
|
243 |
-
impacts of this request x 1% of 8 billion people x 365 days in a year.)
|
244 |
-
""")
|
245 |
-
with gr.Row():
|
246 |
-
electricity_production, count = format_energy_eq_electricity_production(impacts.energy)
|
247 |
-
if electricity_production == EnergyProduction.NUCLEAR:
|
248 |
-
emoji = "☢️"
|
249 |
-
name = "Nuclear power plants"
|
250 |
-
if electricity_production == EnergyProduction.WIND:
|
251 |
-
emoji = "💨️ "
|
252 |
-
name = "Wind turbines"
|
253 |
-
with gr.Column(scale=1, min_width=300):
|
254 |
-
gr.Markdown(f"""
|
255 |
-
<h2 align="center">{emoji} $$ \Large {count.magnitude:.0f} $$ {name} <span style="font-size: 12px">(yearly)</span></h2>
|
256 |
-
<p align="center"><i>Based on electricity consumption<i></p><br>
|
257 |
-
""", latex_delimiters=[{"left": "$$", "right": "$$", "display": False}])
|
258 |
-
|
259 |
-
ireland_count = format_energy_eq_electricity_consumption_ireland(impacts.energy)
|
260 |
-
with gr.Column(scale=1, min_width=300):
|
261 |
-
gr.Markdown(f"""
|
262 |
-
<h2 align="center">🇮🇪 $$ \Large {ireland_count.magnitude:.2g} $$ x Ireland <span style="font-size: 12px">(yearly ⚡️ cons.)</span></h2>
|
263 |
-
<p align="center"><i>Based on electricity consumption<i></p><br>
|
264 |
-
""", latex_delimiters=[{"left": "$$", "right": "$$", "display": False}])
|
265 |
-
|
266 |
-
paris_nyc_airplane = format_gwp_eq_airplane_paris_nyc(impacts.gwp)
|
267 |
-
with gr.Column(scale=1, min_width=300):
|
268 |
-
gr.Markdown(f"""
|
269 |
-
<h2 align="center">✈️ $$ \Large {paris_nyc_airplane.magnitude:,.0f} $$ Paris ↔ NYC </h2>
|
270 |
-
<p align="center"><i>Based on GHG emissions<i></p><br>
|
271 |
-
""", latex_delimiters=[{"left": "$$", "right": "$$", "display": False}])
|
272 |
-
|
273 |
-
with gr.Tab("🤓 Expert Mode"):
|
274 |
-
|
275 |
-
with gr.Row():
|
276 |
-
gr.Markdown("# 🤓 Expert mode")
|
277 |
-
|
278 |
-
model = gr.Dropdown(
|
279 |
-
MODELS + [CUSTOM],
|
280 |
-
label="Model name",
|
281 |
-
value="openai/gpt-3.5-turbo",
|
282 |
-
filterable=True,
|
283 |
-
interactive=True
|
284 |
-
)
|
285 |
-
input_model_active_params = gr.Number(
|
286 |
-
label="Number of billions of active parameters",
|
287 |
-
value=45.0,
|
288 |
-
interactive=True
|
289 |
-
)
|
290 |
-
input_model_total_params = gr.Number(
|
291 |
-
label="Number of billions of total parameters",
|
292 |
-
value=45.0,
|
293 |
-
interactive=True
|
294 |
-
)
|
295 |
-
|
296 |
-
model.change(fn=model_active_params_fn,
|
297 |
-
inputs=[model, input_model_active_params],
|
298 |
-
outputs=[input_model_active_params])
|
299 |
-
model.change(fn=model_total_params_fn,
|
300 |
-
inputs=[model, input_model_total_params],
|
301 |
-
outputs=[input_model_total_params])
|
302 |
-
input_model_active_params.input(fn=custom, outputs=[model])
|
303 |
-
input_model_total_params.input(fn=custom, outputs=[model])
|
304 |
-
|
305 |
-
input_tokens = gr.Number(
|
306 |
-
label="Output tokens",
|
307 |
-
value=100
|
308 |
-
)
|
309 |
-
|
310 |
-
mix = gr.Dropdown(
|
311 |
-
COUNTRY_CODES + [CUSTOM],
|
312 |
-
label="Location",
|
313 |
-
value="WOR",
|
314 |
-
filterable=True,
|
315 |
-
interactive=True
|
316 |
-
)
|
317 |
-
input_mix_gwp = gr.Number(
|
318 |
-
label="Electricity mix - GHG emissions [kgCO2eq / kWh]",
|
319 |
-
value=IF_ELECTRICITY_MIX_GWP,
|
320 |
-
interactive=True
|
321 |
-
)
|
322 |
-
input_mix_adpe = gr.Number(
|
323 |
-
label="Electricity mix - Abiotic resources [kgSbeq / kWh]",
|
324 |
-
value=IF_ELECTRICITY_MIX_ADPE,
|
325 |
-
interactive=True
|
326 |
-
)
|
327 |
-
input_mix_pe = gr.Number(
|
328 |
-
label="Electricity mix - Primary energy [MJ / kWh]",
|
329 |
-
value=IF_ELECTRICITY_MIX_PE,
|
330 |
-
interactive=True
|
331 |
-
)
|
332 |
-
|
333 |
-
mix.change(fn=mix_fn,
|
334 |
-
inputs=[mix, input_mix_adpe, input_mix_pe, input_mix_gwp],
|
335 |
-
outputs=[input_mix_adpe, input_mix_pe, input_mix_gwp])
|
336 |
-
input_mix_gwp.input(fn=custom, outputs=mix)
|
337 |
-
input_mix_adpe.input(fn=custom, outputs=mix)
|
338 |
-
input_mix_pe.input(fn=custom, outputs=mix)
|
339 |
-
|
340 |
-
|
341 |
-
@gr.render(inputs=[
|
342 |
-
input_model_active_params,
|
343 |
-
input_model_total_params,
|
344 |
-
input_tokens,
|
345 |
-
input_mix_gwp,
|
346 |
-
input_mix_adpe,
|
347 |
-
input_mix_pe
|
348 |
-
])
|
349 |
-
def render_expert(
|
350 |
-
model_active_params,
|
351 |
-
model_total_params,
|
352 |
-
tokens,
|
353 |
-
mix_gwp,
|
354 |
-
mix_adpe,
|
355 |
-
mix_pe
|
356 |
-
):
|
357 |
-
impacts = compute_llm_impacts_expert(
|
358 |
-
model_active_parameter_count=model_active_params,
|
359 |
-
model_total_parameter_count=model_total_params,
|
360 |
-
output_token_count=tokens,
|
361 |
-
request_latency=100000,
|
362 |
-
if_electricity_mix_gwp=mix_gwp,
|
363 |
-
if_electricity_mix_adpe=mix_adpe,
|
364 |
-
if_electricity_mix_pe=mix_pe
|
365 |
-
)
|
366 |
-
impacts, usage, embodied = format_impacts_expert(impacts)
|
367 |
-
|
368 |
-
with gr.Blocks():
|
369 |
-
|
370 |
-
with gr.Row():
|
371 |
-
gr.Markdown(f"""
|
372 |
-
<h2 align = "center">Environmental impacts</h2>
|
373 |
-
""")
|
374 |
-
|
375 |
-
with gr.Row():
|
376 |
-
with gr.Column(scale=1, min_width=220):
|
377 |
-
gr.Markdown(f"""
|
378 |
-
<h2 align="center">⚡️ Energy</h2>
|
379 |
-
$$ \Large {impacts.energy.magnitude:.3g} \ \large {impacts.energy.units} $$
|
380 |
-
<p align="center"><i>Evaluates the electricity consumption<i></p><br>
|
381 |
-
""")
|
382 |
-
|
383 |
-
with gr.Column(scale=1, min_width=220):
|
384 |
-
gr.Markdown(f"""
|
385 |
-
<h2 align="center">🌍️ GHG Emissions</h2>
|
386 |
-
$$ \Large {impacts.gwp.magnitude:.3g} \ \large {impacts.gwp.units} $$
|
387 |
-
<p align="center"><i>Evaluates the effect on global warming<i></p><br>
|
388 |
-
$$ \Large {100*usage.gwp.value / (usage.gwp.value + embodied.gwp.value):.3} $$
|
389 |
-
<p align="center"><i>% of GWP by usage (vs embodied)<i></p><br>
|
390 |
-
""")
|
391 |
-
|
392 |
-
with gr.Column(scale=1, min_width=220):
|
393 |
-
gr.Markdown(f"""
|
394 |
-
<h2 align="center">🪨 Abiotic Resources</h2>
|
395 |
-
$$ \Large {impacts.adpe.magnitude:.3g} \ \large {impacts.adpe.units} $$
|
396 |
-
<p align="center"><i>Evaluates the use of metals and minerals<i></p><br>
|
397 |
-
$$ \Large {100*usage.adpe.value / (usage.adpe.value + embodied.adpe.value):.3} $$
|
398 |
-
<p align="center"><i>% of ADPE by usage (vs embodied)<i></p><br>
|
399 |
-
""")
|
400 |
-
|
401 |
-
with gr.Column(scale=1, min_width=220):
|
402 |
-
gr.Markdown(f"""
|
403 |
-
<h2 align="center">⛽️ Primary Energy</h2>
|
404 |
-
$$ \Large {impacts.pe.magnitude:.3g} \ \large {impacts.pe.units} $$
|
405 |
-
<p align="center"><i>Evaluates the use of energy resources<i></p><br>
|
406 |
-
$$ \Large {100*usage.pe.value / (usage.pe.value + embodied.pe.value):.3} $$
|
407 |
-
<p align="center"><i>% of PE by usage (vs embodied)<i></p><br>
|
408 |
-
""")
|
409 |
-
|
410 |
-
with gr.Row():
|
411 |
-
gr.Markdown(f"""
|
412 |
-
<h2 align="center">How can location impact the footprint ?</h2>
|
413 |
-
""")
|
414 |
-
|
415 |
-
with gr.Row():
|
416 |
-
gr.BarPlot(df_elec_mix_for_plot,
|
417 |
-
x='country',
|
418 |
-
y='electricity_mix',
|
419 |
-
sort='y',
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
""
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
""
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
""
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
""
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
with gr.
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
with gr.
|
534 |
-
gr.
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
import requests
|
4 |
+
from bs4 import BeautifulSoup
|
5 |
+
|
6 |
+
import tiktoken
|
7 |
+
|
8 |
+
from ecologits.tracers.utils import compute_llm_impacts, _avg
|
9 |
+
from ecologits.impacts.llm import compute_llm_impacts as compute_llm_impacts_expert
|
10 |
+
from ecologits.impacts.llm import IF_ELECTRICITY_MIX_GWP, IF_ELECTRICITY_MIX_ADPE, IF_ELECTRICITY_MIX_PE
|
11 |
+
from ecologits.model_repository import models
|
12 |
+
|
13 |
+
from src.assets import custom_css
|
14 |
+
from src.electricity_mix import COUNTRY_CODES, find_electricity_mix
|
15 |
+
from src.content import (
|
16 |
+
HERO_TEXT,
|
17 |
+
ABOUT_TEXT,
|
18 |
+
CITATION_LABEL,
|
19 |
+
CITATION_TEXT,
|
20 |
+
LICENCE_TEXT, METHODOLOGY_TEXT
|
21 |
+
)
|
22 |
+
from src.constants import (
|
23 |
+
PROVIDERS,
|
24 |
+
OPENAI_MODELS,
|
25 |
+
ANTHROPIC_MODELS,
|
26 |
+
COHERE_MODELS,
|
27 |
+
META_MODELS,
|
28 |
+
MISTRALAI_MODELS,
|
29 |
+
PROMPTS,
|
30 |
+
CLOSED_SOURCE_MODELS,
|
31 |
+
MODELS,
|
32 |
+
)
|
33 |
+
from src.utils import (
|
34 |
+
format_impacts,
|
35 |
+
format_impacts_expert,
|
36 |
+
format_energy_eq_physical_activity,
|
37 |
+
PhysicalActivity,
|
38 |
+
format_energy_eq_electric_vehicle,
|
39 |
+
format_gwp_eq_streaming, format_energy_eq_electricity_production, EnergyProduction,
|
40 |
+
format_gwp_eq_airplane_paris_nyc, format_energy_eq_electricity_consumption_ireland,
|
41 |
+
df_elec_mix_for_plot
|
42 |
+
)
|
43 |
+
|
44 |
+
CUSTOM = "Custom"
|
45 |
+
|
46 |
+
tokenizer = tiktoken.get_encoding('cl100k_base')
|
47 |
+
|
48 |
+
def model_list(provider: str) -> gr.Dropdown:
|
49 |
+
if provider == "openai":
|
50 |
+
return gr.Dropdown(
|
51 |
+
OPENAI_MODELS,
|
52 |
+
label="Model",
|
53 |
+
value=OPENAI_MODELS[0][1],
|
54 |
+
filterable=True,
|
55 |
+
)
|
56 |
+
elif provider == "anthropic":
|
57 |
+
return gr.Dropdown(
|
58 |
+
ANTHROPIC_MODELS,
|
59 |
+
label="Model",
|
60 |
+
value=ANTHROPIC_MODELS[0][1],
|
61 |
+
filterable=True,
|
62 |
+
)
|
63 |
+
elif provider == "cohere":
|
64 |
+
return gr.Dropdown(
|
65 |
+
COHERE_MODELS,
|
66 |
+
label="Model",
|
67 |
+
value=COHERE_MODELS[0][1],
|
68 |
+
filterable=True,
|
69 |
+
)
|
70 |
+
elif provider == "huggingface_hub/meta":
|
71 |
+
return gr.Dropdown(
|
72 |
+
META_MODELS,
|
73 |
+
label="Model",
|
74 |
+
value=META_MODELS[0][1],
|
75 |
+
filterable=True,
|
76 |
+
)
|
77 |
+
elif provider == "mistralai":
|
78 |
+
return gr.Dropdown(
|
79 |
+
MISTRALAI_MODELS,
|
80 |
+
label="Model",
|
81 |
+
value=MISTRALAI_MODELS[0][1],
|
82 |
+
filterable=True,
|
83 |
+
)
|
84 |
+
|
85 |
+
|
86 |
+
def custom():
|
87 |
+
return CUSTOM
|
88 |
+
|
89 |
+
def tiktoken_len(text):
|
90 |
+
tokens = tokenizer.encode(
|
91 |
+
text,
|
92 |
+
disallowed_special=()
|
93 |
+
)
|
94 |
+
return len(tokens)
|
95 |
+
|
96 |
+
def model_active_params_fn(model_name: str, n_param: float):
|
97 |
+
if model_name == CUSTOM:
|
98 |
+
return n_param
|
99 |
+
provider, model_name = model_name.split('/', 1)
|
100 |
+
model = models.find_model(provider=provider, model_name=model_name)
|
101 |
+
return model.active_parameters or _avg(model.active_parameters_range)
|
102 |
+
|
103 |
+
|
104 |
+
def model_total_params_fn(model_name: str, n_param: float):
|
105 |
+
if model_name == CUSTOM:
|
106 |
+
return n_param
|
107 |
+
provider, model_name = model_name.split('/', 1)
|
108 |
+
model = models.find_model(provider=provider, model_name=model_name)
|
109 |
+
return model.total_parameters or _avg(model.total_parameters_range)
|
110 |
+
|
111 |
+
|
112 |
+
def mix_fn(country_code: str, mix_adpe: float, mix_pe: float, mix_gwp: float):
|
113 |
+
if country_code == CUSTOM:
|
114 |
+
return mix_adpe, mix_pe, mix_gwp
|
115 |
+
return find_electricity_mix(country_code)
|
116 |
+
|
117 |
+
with gr.Blocks(css=custom_css) as demo:
|
118 |
+
gr.Markdown(HERO_TEXT)
|
119 |
+
|
120 |
+
with gr.Tab("🧮 Calculator"):
|
121 |
+
with gr.Row():
|
122 |
+
gr.Markdown("# Estimate the environmental impacts of LLM inference")
|
123 |
+
with gr.Row():
|
124 |
+
input_provider = gr.Dropdown(
|
125 |
+
PROVIDERS,
|
126 |
+
label="Provider",
|
127 |
+
value=PROVIDERS[0][1],
|
128 |
+
filterable=True,
|
129 |
+
)
|
130 |
+
|
131 |
+
input_model = gr.Dropdown(
|
132 |
+
OPENAI_MODELS,
|
133 |
+
label="Model",
|
134 |
+
value=OPENAI_MODELS[0][1],
|
135 |
+
filterable=True,
|
136 |
+
)
|
137 |
+
input_provider.change(model_list, input_provider, input_model)
|
138 |
+
|
139 |
+
input_prompt = gr.Dropdown(
|
140 |
+
PROMPTS,
|
141 |
+
label="Example prompt",
|
142 |
+
value=400,
|
143 |
+
)
|
144 |
+
|
145 |
+
|
146 |
+
@gr.render(inputs=[input_provider, input_model, input_prompt])
|
147 |
+
def render_simple(provider, model, prompt):
|
148 |
+
if provider.startswith("huggingface_hub"):
|
149 |
+
provider = provider.split("/")[0]
|
150 |
+
if models.find_model(provider, model) is not None:
|
151 |
+
impacts = compute_llm_impacts(
|
152 |
+
provider=provider,
|
153 |
+
model_name=model,
|
154 |
+
output_token_count=prompt,
|
155 |
+
request_latency=100000
|
156 |
+
)
|
157 |
+
impacts = format_impacts(impacts)
|
158 |
+
|
159 |
+
# Inference impacts
|
160 |
+
with gr.Blocks():
|
161 |
+
if f"{provider}/{model}" in CLOSED_SOURCE_MODELS:
|
162 |
+
with gr.Row():
|
163 |
+
gr.Markdown("""<p> ⚠️ You have selected a closed-source model. Please be aware that
|
164 |
+
some providers do not fully disclose information about such models. Consequently, our
|
165 |
+
estimates have a lower precision for closed-source models. For further details, refer to
|
166 |
+
our FAQ in the About section.
|
167 |
+
</p>""", elem_classes="warning-box")
|
168 |
+
|
169 |
+
with gr.Row():
|
170 |
+
gr.Markdown("""
|
171 |
+
## Environmental impacts
|
172 |
+
|
173 |
+
To understand how the environmental impacts are computed go to the 📖 Methodology tab.
|
174 |
+
""")
|
175 |
+
with gr.Row():
|
176 |
+
with gr.Column(scale=1, min_width=220):
|
177 |
+
gr.Markdown(f"""
|
178 |
+
<h2 align="center">⚡️ Energy</h2>
|
179 |
+
$$ \Large {impacts.energy.magnitude:.3g} \ \large {impacts.energy.units} $$
|
180 |
+
<p align="center"><i>Evaluates the electricity consumption<i></p><br>
|
181 |
+
""")
|
182 |
+
with gr.Column(scale=1, min_width=220):
|
183 |
+
gr.Markdown(f"""
|
184 |
+
<h2 align="center">🌍️ GHG Emissions</h2>
|
185 |
+
$$ \Large {impacts.gwp.magnitude:.3g} \ \large {impacts.gwp.units} $$
|
186 |
+
<p align="center"><i>Evaluates the effect on global warming<i></p><br>
|
187 |
+
""")
|
188 |
+
with gr.Column(scale=1, min_width=220):
|
189 |
+
gr.Markdown(f"""
|
190 |
+
<h2 align="center">🪨 Abiotic Resources</h2>
|
191 |
+
$$ \Large {impacts.adpe.magnitude:.3g} \ \large {impacts.adpe.units} $$
|
192 |
+
<p align="center"><i>Evaluates the use of metals and minerals<i></p><br>
|
193 |
+
""")
|
194 |
+
with gr.Column(scale=1, min_width=220):
|
195 |
+
gr.Markdown(f"""
|
196 |
+
<h2 align="center">⛽️ Primary Energy</h2>
|
197 |
+
$$ \Large {impacts.pe.magnitude:.3g} \ \large {impacts.pe.units} $$
|
198 |
+
<p align="center"><i>Evaluates the use of energy resources<i></p><br>
|
199 |
+
""")
|
200 |
+
|
201 |
+
# Impacts equivalents
|
202 |
+
with gr.Blocks():
|
203 |
+
with gr.Row():
|
204 |
+
gr.Markdown("""
|
205 |
+
---
|
206 |
+
## That's equivalent to...
|
207 |
+
|
208 |
+
Making this request to the LLM is equivalent to the following actions.
|
209 |
+
""")
|
210 |
+
with gr.Row():
|
211 |
+
physical_activity, distance = format_energy_eq_physical_activity(impacts.energy)
|
212 |
+
if physical_activity == PhysicalActivity.WALKING:
|
213 |
+
physical_activity = "🚶 " + physical_activity.capitalize()
|
214 |
+
if physical_activity == PhysicalActivity.RUNNING:
|
215 |
+
physical_activity = "🏃 " + physical_activity.capitalize()
|
216 |
+
with gr.Column(scale=1, min_width=300):
|
217 |
+
gr.Markdown(f"""
|
218 |
+
<h2 align="center">{physical_activity} $$ \Large {distance.magnitude:.3g}\ {distance.units} $$ </h2>
|
219 |
+
<p align="center"><i>Based on energy consumption<i></p><br>
|
220 |
+
""", latex_delimiters=[{"left": "$$", "right": "$$", "display": False}])
|
221 |
+
|
222 |
+
ev_eq = format_energy_eq_electric_vehicle(impacts.energy)
|
223 |
+
with gr.Column(scale=1, min_width=300):
|
224 |
+
gr.Markdown(f"""
|
225 |
+
<h2 align="center">🔋 Electric Vehicle $$ \Large {ev_eq.magnitude:.3g}\ {ev_eq.units} $$ </h2>
|
226 |
+
<p align="center"><i>Based on energy consumption<i></p><br>
|
227 |
+
""", latex_delimiters=[{"left": "$$", "right": "$$", "display": False}])
|
228 |
+
|
229 |
+
streaming_eq = format_gwp_eq_streaming(impacts.gwp)
|
230 |
+
with gr.Column(scale=1, min_width=300):
|
231 |
+
gr.Markdown(f"""
|
232 |
+
<h2 align="center">⏯️ Streaming $$ \Large {streaming_eq.magnitude:.3g}\ {streaming_eq.units} $$ </h2>
|
233 |
+
<p align="center"><i>Based on GHG emissions<i></p><br>
|
234 |
+
""", latex_delimiters=[{"left": "$$", "right": "$$", "display": False}])
|
235 |
+
|
236 |
+
# Bigger scale impacts equivalent
|
237 |
+
with gr.Blocks():
|
238 |
+
with gr.Row():
|
239 |
+
gr.Markdown("""
|
240 |
+
## What if 1% of the planet does this request everyday for 1 year?
|
241 |
+
|
242 |
+
If this use case is largely deployed around the world the equivalent impacts would be. (The
|
243 |
+
impacts of this request x 1% of 8 billion people x 365 days in a year.)
|
244 |
+
""")
|
245 |
+
with gr.Row():
|
246 |
+
electricity_production, count = format_energy_eq_electricity_production(impacts.energy)
|
247 |
+
if electricity_production == EnergyProduction.NUCLEAR:
|
248 |
+
emoji = "☢️"
|
249 |
+
name = "Nuclear power plants"
|
250 |
+
if electricity_production == EnergyProduction.WIND:
|
251 |
+
emoji = "💨️ "
|
252 |
+
name = "Wind turbines"
|
253 |
+
with gr.Column(scale=1, min_width=300):
|
254 |
+
gr.Markdown(f"""
|
255 |
+
<h2 align="center">{emoji} $$ \Large {count.magnitude:.0f} $$ {name} <span style="font-size: 12px">(yearly)</span></h2>
|
256 |
+
<p align="center"><i>Based on electricity consumption<i></p><br>
|
257 |
+
""", latex_delimiters=[{"left": "$$", "right": "$$", "display": False}])
|
258 |
+
|
259 |
+
ireland_count = format_energy_eq_electricity_consumption_ireland(impacts.energy)
|
260 |
+
with gr.Column(scale=1, min_width=300):
|
261 |
+
gr.Markdown(f"""
|
262 |
+
<h2 align="center">🇮🇪 $$ \Large {ireland_count.magnitude:.2g} $$ x Ireland <span style="font-size: 12px">(yearly ⚡️ cons.)</span></h2>
|
263 |
+
<p align="center"><i>Based on electricity consumption<i></p><br>
|
264 |
+
""", latex_delimiters=[{"left": "$$", "right": "$$", "display": False}])
|
265 |
+
|
266 |
+
paris_nyc_airplane = format_gwp_eq_airplane_paris_nyc(impacts.gwp)
|
267 |
+
with gr.Column(scale=1, min_width=300):
|
268 |
+
gr.Markdown(f"""
|
269 |
+
<h2 align="center">✈️ $$ \Large {paris_nyc_airplane.magnitude:,.0f} $$ Paris ↔ NYC </h2>
|
270 |
+
<p align="center"><i>Based on GHG emissions<i></p><br>
|
271 |
+
""", latex_delimiters=[{"left": "$$", "right": "$$", "display": False}])
|
272 |
+
|
273 |
+
with gr.Tab("🤓 Expert Mode"):
|
274 |
+
|
275 |
+
with gr.Row():
|
276 |
+
gr.Markdown("# 🤓 Expert mode")
|
277 |
+
|
278 |
+
model = gr.Dropdown(
|
279 |
+
MODELS + [CUSTOM],
|
280 |
+
label="Model name",
|
281 |
+
value="openai/gpt-3.5-turbo",
|
282 |
+
filterable=True,
|
283 |
+
interactive=True
|
284 |
+
)
|
285 |
+
input_model_active_params = gr.Number(
|
286 |
+
label="Number of billions of active parameters",
|
287 |
+
value=45.0,
|
288 |
+
interactive=True
|
289 |
+
)
|
290 |
+
input_model_total_params = gr.Number(
|
291 |
+
label="Number of billions of total parameters",
|
292 |
+
value=45.0,
|
293 |
+
interactive=True
|
294 |
+
)
|
295 |
+
|
296 |
+
model.change(fn=model_active_params_fn,
|
297 |
+
inputs=[model, input_model_active_params],
|
298 |
+
outputs=[input_model_active_params])
|
299 |
+
model.change(fn=model_total_params_fn,
|
300 |
+
inputs=[model, input_model_total_params],
|
301 |
+
outputs=[input_model_total_params])
|
302 |
+
input_model_active_params.input(fn=custom, outputs=[model])
|
303 |
+
input_model_total_params.input(fn=custom, outputs=[model])
|
304 |
+
|
305 |
+
input_tokens = gr.Number(
|
306 |
+
label="Output tokens",
|
307 |
+
value=100
|
308 |
+
)
|
309 |
+
|
310 |
+
mix = gr.Dropdown(
|
311 |
+
COUNTRY_CODES + [CUSTOM],
|
312 |
+
label="Location",
|
313 |
+
value="WOR",
|
314 |
+
filterable=True,
|
315 |
+
interactive=True
|
316 |
+
)
|
317 |
+
input_mix_gwp = gr.Number(
|
318 |
+
label="Electricity mix - GHG emissions [kgCO2eq / kWh]",
|
319 |
+
value=IF_ELECTRICITY_MIX_GWP,
|
320 |
+
interactive=True
|
321 |
+
)
|
322 |
+
input_mix_adpe = gr.Number(
|
323 |
+
label="Electricity mix - Abiotic resources [kgSbeq / kWh]",
|
324 |
+
value=IF_ELECTRICITY_MIX_ADPE,
|
325 |
+
interactive=True
|
326 |
+
)
|
327 |
+
input_mix_pe = gr.Number(
|
328 |
+
label="Electricity mix - Primary energy [MJ / kWh]",
|
329 |
+
value=IF_ELECTRICITY_MIX_PE,
|
330 |
+
interactive=True
|
331 |
+
)
|
332 |
+
|
333 |
+
mix.change(fn=mix_fn,
|
334 |
+
inputs=[mix, input_mix_adpe, input_mix_pe, input_mix_gwp],
|
335 |
+
outputs=[input_mix_adpe, input_mix_pe, input_mix_gwp])
|
336 |
+
input_mix_gwp.input(fn=custom, outputs=mix)
|
337 |
+
input_mix_adpe.input(fn=custom, outputs=mix)
|
338 |
+
input_mix_pe.input(fn=custom, outputs=mix)
|
339 |
+
|
340 |
+
|
341 |
+
@gr.render(inputs=[
|
342 |
+
input_model_active_params,
|
343 |
+
input_model_total_params,
|
344 |
+
input_tokens,
|
345 |
+
input_mix_gwp,
|
346 |
+
input_mix_adpe,
|
347 |
+
input_mix_pe
|
348 |
+
])
|
349 |
+
def render_expert(
|
350 |
+
model_active_params,
|
351 |
+
model_total_params,
|
352 |
+
tokens,
|
353 |
+
mix_gwp,
|
354 |
+
mix_adpe,
|
355 |
+
mix_pe
|
356 |
+
):
|
357 |
+
impacts = compute_llm_impacts_expert(
|
358 |
+
model_active_parameter_count=model_active_params,
|
359 |
+
model_total_parameter_count=model_total_params,
|
360 |
+
output_token_count=tokens,
|
361 |
+
request_latency=100000,
|
362 |
+
if_electricity_mix_gwp=mix_gwp,
|
363 |
+
if_electricity_mix_adpe=mix_adpe,
|
364 |
+
if_electricity_mix_pe=mix_pe
|
365 |
+
)
|
366 |
+
impacts, usage, embodied = format_impacts_expert(impacts)
|
367 |
+
|
368 |
+
with gr.Blocks():
|
369 |
+
|
370 |
+
with gr.Row():
|
371 |
+
gr.Markdown(f"""
|
372 |
+
<h2 align = "center">Environmental impacts</h2>
|
373 |
+
""")
|
374 |
+
|
375 |
+
with gr.Row():
|
376 |
+
with gr.Column(scale=1, min_width=220):
|
377 |
+
gr.Markdown(f"""
|
378 |
+
<h2 align="center">⚡️ Energy</h2>
|
379 |
+
$$ \Large {impacts.energy.magnitude:.3g} \ \large {impacts.energy.units} $$
|
380 |
+
<p align="center"><i>Evaluates the electricity consumption<i></p><br>
|
381 |
+
""")
|
382 |
+
|
383 |
+
with gr.Column(scale=1, min_width=220):
|
384 |
+
gr.Markdown(f"""
|
385 |
+
<h2 align="center">🌍️ GHG Emissions</h2>
|
386 |
+
$$ \Large {impacts.gwp.magnitude:.3g} \ \large {impacts.gwp.units} $$
|
387 |
+
<p align="center"><i>Evaluates the effect on global warming<i></p><br>
|
388 |
+
$$ \Large {100*usage.gwp.value / (usage.gwp.value + embodied.gwp.value):.3} $$
|
389 |
+
<p align="center"><i>% of GWP by usage (vs embodied)<i></p><br>
|
390 |
+
""")
|
391 |
+
|
392 |
+
with gr.Column(scale=1, min_width=220):
|
393 |
+
gr.Markdown(f"""
|
394 |
+
<h2 align="center">🪨 Abiotic Resources</h2>
|
395 |
+
$$ \Large {impacts.adpe.magnitude:.3g} \ \large {impacts.adpe.units} $$
|
396 |
+
<p align="center"><i>Evaluates the use of metals and minerals<i></p><br>
|
397 |
+
$$ \Large {100*usage.adpe.value / (usage.adpe.value + embodied.adpe.value):.3} $$
|
398 |
+
<p align="center"><i>% of ADPE by usage (vs embodied)<i></p><br>
|
399 |
+
""")
|
400 |
+
|
401 |
+
with gr.Column(scale=1, min_width=220):
|
402 |
+
gr.Markdown(f"""
|
403 |
+
<h2 align="center">⛽️ Primary Energy</h2>
|
404 |
+
$$ \Large {impacts.pe.magnitude:.3g} \ \large {impacts.pe.units} $$
|
405 |
+
<p align="center"><i>Evaluates the use of energy resources<i></p><br>
|
406 |
+
$$ \Large {100*usage.pe.value / (usage.pe.value + embodied.pe.value):.3} $$
|
407 |
+
<p align="center"><i>% of PE by usage (vs embodied)<i></p><br>
|
408 |
+
""")
|
409 |
+
|
410 |
+
with gr.Row():
|
411 |
+
gr.Markdown(f"""
|
412 |
+
<h2 align="center">How can location impact the footprint ?</h2>
|
413 |
+
""")
|
414 |
+
|
415 |
+
with gr.Row():
|
416 |
+
gr.BarPlot(df_elec_mix_for_plot,
|
417 |
+
x='country',
|
418 |
+
y='electricity_mix',
|
419 |
+
sort='y',
|
420 |
+
scale=1,
|
421 |
+
height=250,
|
422 |
+
min_width=400,
|
423 |
+
x_title=None,
|
424 |
+
y_title='electricity mix in gCO2eq / kWh')
|
425 |
+
|
426 |
+
with gr.Tab("🔍 Evaluate your own usage"):
|
427 |
+
|
428 |
+
with gr.Row():
|
429 |
+
gr.Markdown("""
|
430 |
+
# 🔍 Evaluate your own usage
|
431 |
+
⚠️ For now, only ChatGPT conversation import is available.
|
432 |
+
You can always try out other models - however results might be inaccurate due to fixed parameters, such as tokenization method.
|
433 |
+
""")
|
434 |
+
|
435 |
+
def process_input(text):
|
436 |
+
|
437 |
+
r = requests.get(text, verify=False)
|
438 |
+
|
439 |
+
soup = BeautifulSoup(r.text, "html.parser")
|
440 |
+
list_text = str(soup).split('parts":["')
|
441 |
+
s = ''
|
442 |
+
for item in list_text[1:int(len(list_text)/2)]:
|
443 |
+
if list_text.index(item)%2 == 1:
|
444 |
+
s = s + item.split('"]')[0]
|
445 |
+
|
446 |
+
amout_token = tiktoken_len(s)
|
447 |
+
|
448 |
+
return amout_token
|
449 |
+
|
450 |
+
def compute_own_impacts(amount_token, model):
|
451 |
+
provider = model.split('/')[0].lower()
|
452 |
+
model = model.split('/')[1]
|
453 |
+
impacts = compute_llm_impacts(
|
454 |
+
provider=provider,
|
455 |
+
model_name=model,
|
456 |
+
output_token_count=amount_token,
|
457 |
+
request_latency=100000
|
458 |
+
)
|
459 |
+
|
460 |
+
impacts = format_impacts(impacts)
|
461 |
+
|
462 |
+
energy = f"""
|
463 |
+
<h2 align="center">⚡️ Energy</h2>
|
464 |
+
$$ \Large {impacts.energy.magnitude:.3g} \ \large {impacts.energy.units} $$
|
465 |
+
<p align="center"><i>Evaluates the electricity consumption<i></p><br>
|
466 |
+
"""
|
467 |
+
|
468 |
+
gwp = f"""
|
469 |
+
<h2 align="center">🌍️ GHG Emissions</h2>
|
470 |
+
$$ \Large {impacts.gwp.magnitude:.3g} \ \large {impacts.gwp.units} $$
|
471 |
+
<p align="center"><i>Evaluates the effect on global warming<i></p><br>
|
472 |
+
"""
|
473 |
+
|
474 |
+
adp = f"""
|
475 |
+
<h2 align="center">🪨 Abiotic Resources</h2>
|
476 |
+
$$ \Large {impacts.adpe.magnitude:.3g} \ \large {impacts.adpe.units} $$
|
477 |
+
<p align="center"><i>Evaluates the use of metals and minerals<i></p><br>
|
478 |
+
"""
|
479 |
+
|
480 |
+
pe = f"""
|
481 |
+
<h2 align="center">⛽️ Primary Energy</h2>
|
482 |
+
$$ \Large {impacts.pe.magnitude:.3g} \ \large {impacts.pe.units} $$
|
483 |
+
<p align="center"><i>Evaluates the use of energy resources<i></p><br>
|
484 |
+
"""
|
485 |
+
|
486 |
+
return energy, gwp, adp, pe
|
487 |
+
|
488 |
+
def combined_function(text, model):
|
489 |
+
n_token = process_input(text)
|
490 |
+
energy, gwp, adp, pe = compute_own_impacts(n_token, model)
|
491 |
+
return n_token, energy, gwp, adp, pe
|
492 |
+
|
493 |
+
with gr.Blocks():
|
494 |
+
|
495 |
+
text_input = gr.Textbox(label="Paste the URL here (must be on https://chatgpt.com/share/xxxx format)")
|
496 |
+
model = gr.Dropdown(
|
497 |
+
MODELS,
|
498 |
+
label="Model name",
|
499 |
+
value="openai/gpt-4o",
|
500 |
+
filterable=True,
|
501 |
+
interactive=True
|
502 |
+
)
|
503 |
+
|
504 |
+
process_button = gr.Button("Estimate this usage footprint")
|
505 |
+
|
506 |
+
with gr.Accordion("ℹ️ Infos", open=False):
|
507 |
+
n_token = gr.Textbox(label="Total amount of tokens :")
|
508 |
+
|
509 |
+
with gr.Row():
|
510 |
+
with gr.Column(scale=1, min_width=220):
|
511 |
+
energy = gr.Markdown()
|
512 |
+
with gr.Column(scale=1, min_width=220):
|
513 |
+
gwp = gr.Markdown()
|
514 |
+
with gr.Column(scale=1, min_width=220):
|
515 |
+
adp = gr.Markdown()
|
516 |
+
with gr.Column(scale=1, min_width=220):
|
517 |
+
pe = gr.Markdown()
|
518 |
+
|
519 |
+
process_button.click(
|
520 |
+
fn=combined_function,
|
521 |
+
inputs=[text_input, model],
|
522 |
+
outputs=[n_token, energy, gwp, adp, pe]
|
523 |
+
)
|
524 |
+
|
525 |
+
with gr.Tab("📖 Methodology"):
|
526 |
+
gr.Markdown(METHODOLOGY_TEXT,
|
527 |
+
elem_classes="descriptive-text",
|
528 |
+
latex_delimiters=[
|
529 |
+
{"left": "$$", "right": "$$", "display": True},
|
530 |
+
{"left": "$", "right": "$", "display": False}
|
531 |
+
])
|
532 |
+
|
533 |
+
with gr.Tab("ℹ️ About"):
|
534 |
+
gr.Markdown(ABOUT_TEXT, elem_classes="descriptive-text",)
|
535 |
+
|
536 |
+
with gr.Accordion("📚 Citation", open=False):
|
537 |
+
gr.Textbox(
|
538 |
+
value=CITATION_TEXT,
|
539 |
+
label=CITATION_LABEL,
|
540 |
+
interactive=False,
|
541 |
+
show_copy_button=True,
|
542 |
+
lines=len(CITATION_TEXT.split('\n')),
|
543 |
+
)
|
544 |
+
|
545 |
+
# License
|
546 |
+
gr.Markdown(LICENCE_TEXT)
|
547 |
+
|
548 |
+
if __name__ == '__main__':
|
549 |
+
demo.launch()
|