|
import gradio as gr |
|
import torch |
|
import numpy as np |
|
import modin.pandas as pd |
|
from PIL import Image |
|
from diffusers import DiffusionPipeline |
|
from huggingface_hub import login |
|
import os |
|
from glob import glob |
|
from pathlib import Path |
|
from typing import Optional |
|
import uuid |
|
import random |
|
|
|
token = os.environ['HF_TOKEN'] |
|
login(token=token) |
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
torch.cuda.max_memory_allocated(device=device) |
|
torch.cuda.empty_cache() |
|
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-video-diffusion-img2vid-xt-1-1") |
|
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) |
|
|
|
|
|
|
|
torch.cuda.empty_cache() |
|
|
|
max_64_bit_int = 2**63 - 1 |
|
|
|
def sample( |
|
image: Image, |
|
seed: Optional[int] = 42, |
|
randomize_seed: bool = True, |
|
motion_bucket_id: int = 127, |
|
fps_id: int = 6, |
|
version: str = "svd_xt", |
|
cond_aug: float = 0.02, |
|
decoding_t: int = 3, |
|
device: str = "cuda", |
|
output_folder: str = "outputs",): |
|
|
|
if image.mode == "RGBA": |
|
image = image.convert("RGB") |
|
|
|
if(randomize_seed): |
|
seed = random.randint(0, max_64_bit_int) |
|
generator = torch.manual_seed(seed) |
|
torch.cuda.empty_cache() |
|
os.makedirs(output_folder, exist_ok=True) |
|
base_count = len(glob(os.path.join(output_folder, "*.mp4"))) |
|
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4") |
|
|
|
frames = pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=0.1, num_frames=25).frames[0] |
|
export_to_video(frames, video_path, fps=fps_id) |
|
torch.manual_seed(seed) |
|
torch.cuda.empty_cache() |
|
return video_path, seed |
|
|
|
def resize_image(image, output_size=(1024, 578)): |
|
|
|
target_aspect = output_size[0] / output_size[1] |
|
image_aspect = image.width / image.height |
|
|
|
|
|
if image_aspect > target_aspect: |
|
|
|
new_height = output_size[1] |
|
new_width = int(new_height * image_aspect) |
|
resized_image = image.resize((new_width, new_height), Image.LANCZOS) |
|
|
|
left = (new_width - output_size[0]) / 2 |
|
top = 0 |
|
right = (new_width + output_size[0]) / 2 |
|
bottom = output_size[1] |
|
else: |
|
|
|
new_width = output_size[0] |
|
new_height = int(new_width / image_aspect) |
|
resized_image = image.resize((new_width, new_height), Image.LANCZOS) |
|
|
|
left = 0 |
|
top = (new_height - output_size[1]) / 2 |
|
right = output_size[0] |
|
bottom = (new_height + output_size[1]) / 2 |
|
|
|
|
|
cropped_image = resized_image.crop((left, top, right, bottom)) |
|
torch.cuda.empty_cache() |
|
return cropped_image |
|
|
|
with gr.Blocks() as demo: |
|
|
|
|
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
image = gr.Image(label="Upload your image", type="pil") |
|
generate_btn = gr.Button("Generate") |
|
video = gr.Video() |
|
with gr.Accordion("Advanced options", open=False): |
|
seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255) |
|
fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=6, minimum=5, maximum=30) |
|
|
|
image.upload(fn=resize_image, inputs=image, outputs=image, queue=False) |
|
generate_btn.click(fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], outputs=[video, seed], api_name="video",) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=20, api_open=False) |
|
demo.launch(show_api=False) |