Update app.py
Browse files
app.py
CHANGED
@@ -3,317 +3,102 @@ import torch
|
|
3 |
import numpy as np
|
4 |
import modin.pandas as pd
|
5 |
from PIL import Image
|
6 |
-
from diffusers import DiffusionPipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
|
|
|
|
8 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
9 |
-
|
10 |
-
torch.
|
|
|
|
|
|
|
11 |
|
12 |
-
def
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
refiner.enable_xformers_memory_efficient_attention()
|
31 |
-
refiner = refiner.to(device)
|
32 |
-
torch.cuda.empty_cache()
|
33 |
-
upscaled = refiner(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
34 |
-
torch.cuda.empty_cache()
|
35 |
-
return upscaled
|
36 |
-
else:
|
37 |
-
return image
|
38 |
-
else:
|
39 |
-
if upscale == "Yes":
|
40 |
-
image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
41 |
-
upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
42 |
-
upscaler.enable_xformers_memory_efficient_attention()
|
43 |
-
upscaler = upscaler.to(device)
|
44 |
-
torch.cuda.empty_cache()
|
45 |
-
upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
46 |
-
torch.cuda.empty_cache()
|
47 |
-
return upscaled
|
48 |
-
else:
|
49 |
-
image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
50 |
-
torch.cuda.empty_cache()
|
51 |
-
return image
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
anime = anime.to(device)
|
57 |
-
torch.cuda.empty_cache()
|
58 |
-
if refine == "Yes":
|
59 |
-
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
|
60 |
-
refiner.enable_xformers_memory_efficient_attention()
|
61 |
-
refiner = refiner.to(device)
|
62 |
-
torch.cuda.empty_cache()
|
63 |
-
int_image = anime(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
|
64 |
-
image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
|
65 |
-
torch.cuda.empty_cache()
|
66 |
-
if upscale == "Yes":
|
67 |
-
refiner = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
68 |
-
refiner.enable_xformers_memory_efficient_attention()
|
69 |
-
refiner = refiner.to(device)
|
70 |
-
torch.cuda.empty_cache()
|
71 |
-
upscaled = refiner(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
72 |
-
torch.cuda.empty_cache()
|
73 |
-
return upscaled
|
74 |
-
else:
|
75 |
-
return image
|
76 |
-
else:
|
77 |
-
if upscale == "Yes":
|
78 |
-
image = anime(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
79 |
-
upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
80 |
-
upscaler.enable_xformers_memory_efficient_attention()
|
81 |
-
upscaler = upscaler.to(device)
|
82 |
-
torch.cuda.empty_cache()
|
83 |
-
upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
84 |
-
torch.cuda.empty_cache()
|
85 |
-
return upscaled
|
86 |
-
else:
|
87 |
-
image = anime(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
88 |
-
torch.cuda.empty_cache()
|
89 |
-
return image
|
90 |
-
|
91 |
-
if Model == "Disney":
|
92 |
-
disney = DiffusionPipeline.from_pretrained("circulus/canvers-disney-v3.8.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-disney-v3.8.1")
|
93 |
-
disney.enable_xformers_memory_efficient_attention()
|
94 |
-
disney = disney.to(device)
|
95 |
-
torch.cuda.empty_cache()
|
96 |
-
if refine == "Yes":
|
97 |
-
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
|
98 |
-
refiner.enable_xformers_memory_efficient_attention()
|
99 |
-
refiner = refiner.to(device)
|
100 |
-
torch.cuda.empty_cache()
|
101 |
-
int_image = disney(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
|
102 |
-
image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
|
103 |
-
torch.cuda.empty_cache()
|
104 |
-
|
105 |
-
if upscale == "Yes":
|
106 |
-
refiner = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
107 |
-
refiner.enable_xformers_memory_efficient_attention()
|
108 |
-
refiner = refiner.to(device)
|
109 |
-
torch.cuda.empty_cache()
|
110 |
-
upscaled = refiner(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
111 |
-
torch.cuda.empty_cache()
|
112 |
-
return upscaled
|
113 |
-
else:
|
114 |
-
return image
|
115 |
-
else:
|
116 |
-
if upscale == "Yes":
|
117 |
-
image = disney(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
118 |
-
upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
119 |
-
upscaler.enable_xformers_memory_efficient_attention()
|
120 |
-
upscaler = upscaler.to(device)
|
121 |
-
torch.cuda.empty_cache()
|
122 |
-
upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
123 |
-
torch.cuda.empty_cache()
|
124 |
-
return upscaled
|
125 |
-
else:
|
126 |
-
image = disney(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
127 |
-
torch.cuda.empty_cache()
|
128 |
-
return image
|
129 |
-
|
130 |
-
if Model == "StoryBook":
|
131 |
-
story = DiffusionPipeline.from_pretrained("circulus/canvers-story-v3.8.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-story-v3.8.1")
|
132 |
-
story.enable_xformers_memory_efficient_attention()
|
133 |
-
story = story.to(device)
|
134 |
-
torch.cuda.empty_cache()
|
135 |
-
if refine == "Yes":
|
136 |
-
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
|
137 |
-
refiner.enable_xformers_memory_efficient_attention()
|
138 |
-
refiner = refiner.to(device)
|
139 |
-
torch.cuda.empty_cache()
|
140 |
-
int_image = story(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
|
141 |
-
image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
|
142 |
-
torch.cuda.empty_cache()
|
143 |
-
|
144 |
-
if upscale == "Yes":
|
145 |
-
refiner = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
146 |
-
refiner.enable_xformers_memory_efficient_attention()
|
147 |
-
refiner = refiner.to(device)
|
148 |
-
torch.cuda.empty_cache()
|
149 |
-
upscaled = refiner(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
150 |
-
torch.cuda.empty_cache()
|
151 |
-
return upscaled
|
152 |
-
else:
|
153 |
-
return image
|
154 |
-
else:
|
155 |
-
if upscale == "Yes":
|
156 |
-
image = story(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
157 |
-
|
158 |
-
upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
159 |
-
upscaler.enable_xformers_memory_efficient_attention()
|
160 |
-
upscaler = upscaler.to(device)
|
161 |
-
torch.cuda.empty_cache()
|
162 |
-
upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
163 |
-
torch.cuda.empty_cache()
|
164 |
-
return upscaled
|
165 |
-
else:
|
166 |
-
|
167 |
-
image = story(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
168 |
-
torch.cuda.empty_cache()
|
169 |
-
return image
|
170 |
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
if refine == "Yes":
|
177 |
-
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
|
178 |
-
refiner.enable_xformers_memory_efficient_attention()
|
179 |
-
refiner = refiner.to(device)
|
180 |
-
torch.cuda.empty_cache()
|
181 |
-
image = semi(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
|
182 |
-
image = refiner(Prompt, negative_prompt=negative_prompt, image=image, denoising_start=high_noise_frac).images[0]
|
183 |
-
torch.cuda.empty_cache()
|
184 |
-
|
185 |
-
if upscale == "Yes":
|
186 |
-
refiner = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
187 |
-
refiner.enable_xformers_memory_efficient_attention()
|
188 |
-
refiner = refiner.to(device)
|
189 |
-
torch.cuda.empty_cache()
|
190 |
-
upscaled = refiner(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
191 |
-
torch.cuda.empty_cache()
|
192 |
-
return upscaled
|
193 |
-
else:
|
194 |
-
return image
|
195 |
-
else:
|
196 |
-
if upscale == "Yes":
|
197 |
-
image = semi(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
198 |
-
|
199 |
-
upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
200 |
-
upscaler.enable_xformers_memory_efficient_attention()
|
201 |
-
upscaler = upscaler.to(device)
|
202 |
-
torch.cuda.empty_cache()
|
203 |
-
upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
204 |
-
torch.cuda.empty_cache()
|
205 |
-
return upscaled
|
206 |
-
else:
|
207 |
-
|
208 |
-
image = semi(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
209 |
-
torch.cuda.empty_cache()
|
210 |
-
return image
|
211 |
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
torch.cuda.empty_cache()
|
217 |
-
if refine == "Yes":
|
218 |
-
torch.cuda.empty_cache()
|
219 |
-
torch.cuda.max_memory_allocated(device=device)
|
220 |
-
int_image = animagine(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, output_type="latent").images
|
221 |
-
torch.cuda.empty_cache()
|
222 |
-
animagine = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
|
223 |
-
animagine.enable_xformers_memory_efficient_attention()
|
224 |
-
animagine = animagine.to(device)
|
225 |
-
torch.cuda.empty_cache()
|
226 |
-
image = animagine(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
|
227 |
-
torch.cuda.empty_cache()
|
228 |
-
|
229 |
-
if upscale == "Yes":
|
230 |
-
animagine = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
231 |
-
animagine.enable_xformers_memory_efficient_attention()
|
232 |
-
animagine = animagine.to(device)
|
233 |
-
torch.cuda.empty_cache()
|
234 |
-
upscaled = animagine(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
235 |
-
torch.cuda.empty_cache()
|
236 |
-
return upscaled
|
237 |
-
else:
|
238 |
-
return image
|
239 |
-
else:
|
240 |
-
if upscale == "Yes":
|
241 |
-
image = animagine(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
242 |
-
|
243 |
-
upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
244 |
-
upscaler.enable_xformers_memory_efficient_attention()
|
245 |
-
upscaler = upscaler.to(device)
|
246 |
-
torch.cuda.empty_cache()
|
247 |
-
upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
248 |
-
torch.cuda.empty_cache()
|
249 |
-
return upscaled
|
250 |
-
else:
|
251 |
-
|
252 |
-
image = animagine(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
253 |
-
torch.cuda.empty_cache()
|
254 |
-
return image
|
255 |
|
256 |
-
if
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
return image
|
304 |
-
|
305 |
-
gr.Interface(fn=genie, inputs=[gr.Radio(['PhotoReal', 'Anime', 'Disney', 'StoryBook', 'SemiReal', 'Animagine XL 3.0', 'SDXL 1.0'], value='PhotoReal', label='Choose Model'),
|
306 |
-
gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'),
|
307 |
-
gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
|
308 |
-
gr.Slider(512, 1024, 768, step=128, label='Height'),
|
309 |
-
gr.Slider(512, 1024, 768, step=128, label='Width'),
|
310 |
-
gr.Slider(1, maximum=15, value=5, step=.25, label='Guidance Scale'),
|
311 |
-
gr.Slider(25, maximum=100, value=50, step=25, label='Number of Iterations'),
|
312 |
-
gr.Slider(minimum=0, step=1, maximum=9999999999999999, randomize=True, label='Seed: 0 is Random'),
|
313 |
-
gr.Radio(["Yes", "No"], label='SDXL 1.0 Refiner: Use if the Image has too much Noise', value='No'),
|
314 |
-
gr.Slider(minimum=.9, maximum=.99, value=.95, step=.01, label='Refiner Denoise Start %'),
|
315 |
-
gr.Radio(["Yes", "No"], label = 'SD X2 Latent Upscaler?', value="No")],
|
316 |
-
outputs=gr.Image(label='Generated Image'),
|
317 |
-
title="Manju Dream Booth V1.7 with SDXL 1.0 Refiner and SD X2 Latent Upscaler - GPU",
|
318 |
-
description="<br><br><b/>Warning: This Demo is capable of producing NSFW content.",
|
319 |
-
article = "If You Enjoyed this Demo and would like to Donate, you can send any amount to any of these Wallets. <br><br>BTC: bc1qzdm9j73mj8ucwwtsjx4x4ylyfvr6kp7svzjn84 <br>BTC2: 3LWRoKYx6bCLnUrKEdnPo3FCSPQUSFDjFP <br>DOGE: DK6LRc4gfefdCTRk9xPD239N31jh9GjKez <br>SHIB (BEP20): 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>PayPal: https://www.paypal.me/ManjushriBodhisattva <br>ETH: 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br><br>Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").launch(debug=True, max_threads=80)
|
|
|
3 |
import numpy as np
|
4 |
import modin.pandas as pd
|
5 |
from PIL import Image
|
6 |
+
from diffusers import DiffusionPipeline
|
7 |
+
from huggingface_hub import login
|
8 |
+
import os
|
9 |
+
from glob import glob
|
10 |
+
from pathlib import Path
|
11 |
+
from typing import Optional
|
12 |
+
import uuid
|
13 |
+
import random
|
14 |
|
15 |
+
token = os.environ['HF_TOKEN']
|
16 |
+
login(token=token)
|
17 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
18 |
+
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-video-diffusion-img2vid-xt-1-1")
|
19 |
+
#pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
20 |
+
pipe.enable_xformers_memory_efficient_attention()
|
21 |
+
pipe = pipe.to(device)
|
22 |
+
max_64_bit_int = 2**63 - 1
|
23 |
|
24 |
+
def sample(
|
25 |
+
image: Image,
|
26 |
+
seed: Optional[int] = 42,
|
27 |
+
randomize_seed: bool = True,
|
28 |
+
motion_bucket_id: int = 127,
|
29 |
+
fps_id: int = 6,
|
30 |
+
version: str = "svd_xt",
|
31 |
+
cond_aug: float = 0.02,
|
32 |
+
decoding_t: int = 3, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
|
33 |
+
device: str = "cpu",
|
34 |
+
output_folder: str = "outputs",):
|
35 |
+
|
36 |
+
if image.mode == "RGBA":
|
37 |
+
image = image.convert("RGB")
|
38 |
+
|
39 |
+
if(randomize_seed):
|
40 |
+
seed = random.randint(0, max_64_bit_int)
|
41 |
+
generator = torch.manual_seed(seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
os.makedirs(output_folder, exist_ok=True)
|
44 |
+
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
|
45 |
+
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
frames = pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=0.1, num_frames=25).frames[0]
|
48 |
+
export_to_video(frames, video_path, fps=fps_id)
|
49 |
+
torch.manual_seed(seed)
|
50 |
+
|
51 |
+
return video_path, seed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
def resize_image(image, output_size=(1024, 578)):
|
54 |
+
# Calculate aspect ratios
|
55 |
+
target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size
|
56 |
+
image_aspect = image.width / image.height # Aspect ratio of the original image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
# Resize then crop if the original image is larger
|
59 |
+
if image_aspect > target_aspect:
|
60 |
+
# Resize the image to match the target height, maintaining aspect ratio
|
61 |
+
new_height = output_size[1]
|
62 |
+
new_width = int(new_height * image_aspect)
|
63 |
+
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
64 |
+
# Calculate coordinates for cropping
|
65 |
+
left = (new_width - output_size[0]) / 2
|
66 |
+
top = 0
|
67 |
+
right = (new_width + output_size[0]) / 2
|
68 |
+
bottom = output_size[1]
|
69 |
+
else:
|
70 |
+
# Resize the image to match the target width, maintaining aspect ratio
|
71 |
+
new_width = output_size[0]
|
72 |
+
new_height = int(new_width / image_aspect)
|
73 |
+
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
74 |
+
# Calculate coordinates for cropping
|
75 |
+
left = 0
|
76 |
+
top = (new_height - output_size[1]) / 2
|
77 |
+
right = output_size[0]
|
78 |
+
bottom = (new_height + output_size[1]) / 2
|
79 |
+
|
80 |
+
# Crop the image
|
81 |
+
cropped_image = resized_image.crop((left, top, right, bottom))
|
82 |
+
return cropped_image
|
83 |
+
|
84 |
+
with gr.Blocks() as demo:
|
85 |
+
#gr.Markdown('''# Community demo for Stable Video Diffusion - Img2Vid - XT ([model](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt), [paper](https://stability.ai/research/stable-video-diffusion-scaling-latent-video-diffusion-models-to-large-datasets), [stability's ui waitlist](https://stability.ai/contact))
|
86 |
+
#### Research release ([_non-commercial_](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/blob/main/LICENSE)): generate `4s` vid from a single image at (`25 frames` at `6 fps`). this demo uses [🧨 diffusers for low VRAM and fast generation](https://huggingface.co/docs/diffusers/main/en/using-diffusers/svd).
|
87 |
+
#''')
|
88 |
+
with gr.Row():
|
89 |
+
with gr.Column():
|
90 |
+
image = gr.Image(label="Upload your image", type="pil")
|
91 |
+
generate_btn = gr.Button("Generate")
|
92 |
+
video = gr.Video()
|
93 |
+
with gr.Accordion("Advanced options", open=False):
|
94 |
+
seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1)
|
95 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
96 |
+
motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255)
|
97 |
+
fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=6, minimum=5, maximum=30)
|
98 |
+
|
99 |
+
image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
|
100 |
+
generate_btn.click(fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], outputs=[video, seed], api_name="video",)# inputs=image, outputs=[video, seed], fn=sample, cache_examples=True,)
|
101 |
+
|
102 |
+
if __name__ == "__main__":
|
103 |
+
demo.queue(max_size=20, api_open=False)
|
104 |
+
demo.launch(share=True, show_api=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|