File size: 9,834 Bytes
036dfc6
4c9a6f0
036dfc6
4c9a6f0
 
036dfc6
 
4c9a6f0
036dfc6
4c9a6f0
 
036dfc6
 
 
 
4c9a6f0
a8084f8
 
 
036dfc6
 
0cf7a7f
4c9a6f0
036dfc6
 
 
4c9a6f0
036dfc6
 
4c9a6f0
036dfc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c9a6f0
036dfc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c9a6f0
 
56360b9
5a29a17
56360b9
5a29a17
56360b9
5a29a17
56360b9
5a29a17
56360b9
5a29a17
56360b9
036dfc6
4c9a6f0
036dfc6
 
 
 
 
4c9a6f0
0cf7a7f
5a29a17
 
d1f2c3f
 
5a29a17
 
036dfc6
 
 
4c9a6f0
036dfc6
 
 
 
 
 
4c9a6f0
036dfc6
 
a8084f8
 
 
 
 
 
036dfc6
 
 
 
 
 
4c9a6f0
036dfc6
4c9a6f0
036dfc6
 
 
 
 
 
 
 
5a29a17
036dfc6
 
 
 
 
 
5a29a17
036dfc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c9a6f0
 
036dfc6
 
 
 
 
 
 
 
 
4c9a6f0
036dfc6
4c9a6f0
036dfc6
 
 
4c9a6f0
036dfc6
 
 
 
4c9a6f0
 
036dfc6
 
 
 
 
 
 
 
 
 
 
 
 
 
4c9a6f0
 
036dfc6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import random
import os
import uuid
from datetime import datetime
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import DiffusionPipeline
from PIL import Image

# Create permanent storage directory
SAVE_DIR = "saved_images"  # Gradio will handle the persistence
if not os.path.exists(SAVE_DIR):
    os.makedirs(SAVE_DIR, exist_ok=True)

# Load the default image
DEFAULT_IMAGE_PATH = "cover1.webp"

device = "cuda" if torch.cuda.is_available() else "cpu"
repo_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "prithivMLmods/EBook-Creative-Cover-Flux-LoRA"

pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
pipeline.load_lora_weights(adapter_id)
pipeline = pipeline.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

def save_generated_image(image, prompt):
    # Generate unique filename with timestamp
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    unique_id = str(uuid.uuid4())[:8]
    filename = f"{timestamp}_{unique_id}.png"
    filepath = os.path.join(SAVE_DIR, filename)
    
    # Save the image
    image.save(filepath)
    
    # Save metadata
    metadata_file = os.path.join(SAVE_DIR, "metadata.txt")
    with open(metadata_file, "a", encoding="utf-8") as f:
        f.write(f"{filename}|{prompt}|{timestamp}\n")
    
    return filepath

def load_generated_images():
    if not os.path.exists(SAVE_DIR):
        return []
    
    # Load all images from the directory
    image_files = [os.path.join(SAVE_DIR, f) for f in os.listdir(SAVE_DIR) 
                  if f.endswith(('.png', '.jpg', '.jpeg', '.webp'))]
    # Sort by creation time (newest first)
    image_files.sort(key=lambda x: os.path.getctime(x), reverse=True)
    return image_files

def load_predefined_images():
    # Return empty list since we're not using predefined images
    return []

@spaces.GPU(duration=120)
def inference(
    prompt: str,
    seed: int,
    randomize_seed: bool,
    width: int,
    height: int,
    guidance_scale: float,
    num_inference_steps: int,
    lora_scale: float,
    progress: gr.Progress = gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device=device).manual_seed(seed)
    
    image = pipeline(
        prompt=prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
        joint_attention_kwargs={"scale": lora_scale},
    ).images[0]
    
    # Save the generated image
    filepath = save_generated_image(image, prompt)
    
    # Return the image, seed, and updated gallery
    return image, seed, load_generated_images()

examples = [
   "A haunting cathedral ruins bathed in ethereal moonlight, with ancient stone archways stretching toward a starlit sky. The title 'WHISPERS OF ETERNITY' appears in weathered silver lettering that seems to float between the pillars. Ghostly wisps of fog curl around crumbling gothic sculptures, while 'By Alexander Blackwood' is inscribed in elegant script that glows with a subtle blue luminescence. Delicate patterns of celestial symbols and arcane runes border the edges. [trigger]",
   
   "A massive ancient tree with crystalline leaves dominates the composition, its translucent branches reaching across a sunset sky streaked with impossible colors. 'THE LUMINOUS Crown' is written in intricate golden calligraphy that intertwines with the branches. Mysterious glowing orbs float among the leaves, casting prismatic light. 'By Isabella Moonshadow' appears to be carved into the tree's bark. Sacred geometry patterns shimmer in the background. [trigger]",
   
   "A dramatic spiral staircase made of weathered copper and stained glass descends into swirling cosmic depths. The title 'CHRONICLES OF THE INFINITE' spans the spiral in bold art deco typography that seems to be crafted from constellations. Nebulae and galaxies swirl in the background, while 'By Marcus Starweaver' appears to be formed from falling stardust. Complex mechanical clockwork elements frame the corners. [trigger]",
   
   "An intricate doorway carved from ancient jade stands solitary in a field of shimmering black sand. 'GATES OF THE IMMORTAL' is emblazoned across the top in powerful metallic letters that seem to be forged from liquid mercury. Ethereal phoenix feathers drift across the scene, leaving trails of golden light. 'By Victoria Jade' flows along the bottom in brushstrokes that resemble living smoke. Sacred Chinese characters appear to float in the background. [trigger]",
   
   "A magnificent underwater city of pearl and coral rises from abyssal depths, illuminated by bioluminescent sea life. 'DEPTHS OF WONDER' ripples across the scene in iridescent letters that appear to be formed from living water. Schools of ethereal fish create flowing patterns of light, while 'By Neptune Rivers' shimmers like mother-of-pearl below. Ancient Atlantean symbols pulse with a subtle aqua glow around the borders. [trigger]",
   
   "A colossal steampunk clocktower pierces through storm clouds, its gears and mechanisms visible through crystalline walls. 'TIMEKEEPER'S LEGACY' is constructed from intricate brass and copper mechanisms that appear to be in constant motion. Lightning arcs between copper spires, while 'By Theodore Cogsworth' is etched in burnished bronze below. Mathematical equations and alchemical symbols float in the turbulent sky. [trigger]"
]

css = """
footer {
    visibility: hidden;
}
"""

with gr.Blocks(theme=gr.themes.Soft(), css=css, analytics_enabled=False) as demo:
    gr.HTML('<div class="title"> eBOOK Cover generation </div>')
    
    gr.HTML("""<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fginigen-Book-Cover.hf.space">
               <img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fginigen-Book-Cover.hf.space&countColor=%23263759" />
               </a>""")
    
    with gr.Tabs() as tabs:
        with gr.Tab("Generation"):
            with gr.Column(elem_id="col-container"):
                with gr.Row():
                    prompt = gr.Text(
                        label="Prompt",
                        show_label=False,
                        max_lines=1,
                        placeholder="Enter your prompt",
                        container=False,
                    )
                    run_button = gr.Button("Run", scale=0)

                # Modified to include the default image
                result = gr.Image(
                    label="Result",
                    show_label=False,
                    value=DEFAULT_IMAGE_PATH  # Set the default image
                )

                with gr.Accordion("Advanced Settings", open=False):
                    seed = gr.Slider(
                        label="Seed",
                        minimum=0,
                        maximum=MAX_SEED,
                        step=1,
                        value=42,
                    )
                    randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

                    with gr.Row():
                        width = gr.Slider(
                            label="Width",
                            minimum=256,
                            maximum=MAX_IMAGE_SIZE,
                            step=32,
                            value=768,
                        )
                        height = gr.Slider(
                            label="Height",
                            minimum=256,
                            maximum=MAX_IMAGE_SIZE,
                            step=32,
                            value=1024,
                        )

                    with gr.Row():
                        guidance_scale = gr.Slider(
                            label="Guidance scale",
                            minimum=0.0,
                            maximum=10.0,
                            step=0.1,
                            value=3.5,
                        )
                        num_inference_steps = gr.Slider(
                            label="Number of inference steps",
                            minimum=1,
                            maximum=50,
                            step=1,
                            value=30,
                        )
                        lora_scale = gr.Slider(
                            label="LoRA scale",
                            minimum=0.0,
                            maximum=1.0,
                            step=0.1,
                            value=1.0,
                        )

                gr.Examples(
                    examples=examples,
                    inputs=[prompt],
                    outputs=[result, seed],
                )

        with gr.Tab("Gallery"):
            gallery_header = gr.Markdown("### Generated Images Gallery")
            generated_gallery = gr.Gallery(
                label="Generated Images",
                columns=6,
                show_label=False,
                value=load_generated_images(),
                elem_id="generated_gallery",
                height="auto"
            )
            refresh_btn = gr.Button("πŸ”„ Refresh Gallery")

    # Event handlers
    def refresh_gallery():
        return load_generated_images()

    refresh_btn.click(
        fn=refresh_gallery,
        inputs=None,
        outputs=generated_gallery,
    )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=inference,
        inputs=[
            prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            lora_scale,
        ],
        outputs=[result, seed, generated_gallery],
    )

demo.queue()
demo.launch()