Realtime-FLUX / app.py
ginipick's picture
Update app.py
e55ac15 verified
raw
history blame
5.52 kB
import gradio as gr
import numpy as np
import random
import spaces
import torch
import time
import os
from diffusers import DiffusionPipeline
from custom_pipeline import FLUXPipelineWithIntermediateOutputs
from transformers import pipeline
# λ²ˆμ—­ λͺ¨λΈ λ‘œλ“œ
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
# Constants
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
DEFAULT_WIDTH = 1024
DEFAULT_HEIGHT = 1024
DEFAULT_INFERENCE_STEPS = 1
# Device and model setup
dtype = torch.float16
pipe = FLUXPipelineWithIntermediateOutputs.from_pretrained(
"black-forest-labs/FLUX.1-schnell", torch_dtype=dtype
).to("cuda")
torch.cuda.empty_cache()
# ν•œκΈ€ 메뉴 이름 dictionary
korean_labels = {
"Generated Image": "μƒμ„±λœ 이미지",
"Prompt": "ν”„λ‘¬ν”„νŠΈ",
"Enhance Image": "이미지 ν–₯상",
"Advanced Options": "κ³ κΈ‰ μ˜΅μ…˜",
"Seed": "μ‹œλ“œ",
"Randomize Seed": "μ‹œλ“œ λ¬΄μž‘μœ„ν™”",
"Width": "λ„ˆλΉ„",
"Height": "높이",
"Inference Steps": "μΆ”λ‘  단계",
"Inspiration Gallery": "영감 가러리"
}
def translate_if_korean(text):
if any('\u3131' <= char <= '\u3163' or '\uac00' <= char <= '\ud7a3' for char in text):
return translator(text)[0]['translation_text']
return text
# Inference function
@spaces.GPU(duration=25)
def generate_image(prompt, seed=42, width=DEFAULT_WIDTH, height=DEFAULT_HEIGHT, randomize_seed=False, num_inference_steps=DEFAULT_INFERENCE_STEPS):
prompt = translate_if_korean(prompt)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
start_time = time.time()
# Only generate the last image in the sequence
for img in pipe.generate_images(
prompt=prompt,
guidance_scale=0,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
):
latency = f"처리 μ‹œκ°„: {(time.time()-start_time):.2f} 초"
yield img, seed, latency
# Example prompts
examples = [
"λ‹¬μ—μ„œ μ•Œμ—μ„œ λΆ€ν™”ν•˜λŠ” μž‘μ€ 우주 비행사",
"μ•ˆλ…•ν•˜μ„Έμš” 세상이라고 쓰인 ν‘œμ§€νŒμ„ λ“€κ³  μžˆλŠ” 고양이",
"λΉ„λ„ˆ μŠˆλ‹ˆμ²Όμ˜ μ• λ‹ˆλ©”μ΄μ…˜ μΌλŸ¬μŠ€νŠΈλ ˆμ΄μ…˜",
"ν•˜λŠ˜μ„ λ‚˜λŠ” μžλ™μ°¨μ™€ λ„€μ˜¨ λΆˆλΉ›μ΄ μžˆλŠ” 미래적인 λ„μ‹œ 풍경",
"κΈ΄ κ°ˆμƒ‰ μ›¨μ΄λΈŒ 머리λ₯Ό 올렀 λ¬Άκ³  μ•ˆκ²½μ„ μ“΄ μ Šμ€ μ—¬μ„±μ˜ 사진. κ·Έλ…€λŠ” 흰 피뢀에 눈과 μž…μˆ μ„ κ°•μ‘°ν•œ μ€μ€ν•œ ν™”μž₯을 ν–ˆμŠ΅λ‹ˆλ‹€. κ·Έλ…€λŠ” 검은색 μƒμ˜λ₯Ό μž…μ—ˆμŠ΅λ‹ˆλ‹€. 배경은 λ„μ‹œ 건물 μ™Έκ΄€μœΌλ‘œ 보이며, 햇빛이 κ·Έλ…€μ˜ 얼꡴에 λ”°λœ»ν•œ 빛을 λΉ„μΆ”κ³  μžˆμŠ΅λ‹ˆλ‹€.",
"μŠ€ν‹°λΈŒ 작슀λ₯Ό μŠ€νƒ€μ›Œμ¦ˆ μ˜ν™” μΊλ¦­ν„°λ‘œ μƒμƒν•΄λ³΄μ„Έμš”"
]
css = """
footer {
visibility: hidden;
}
"""
# --- Gradio UI ---
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
with gr.Column(elem_id="app-container"):
with gr.Row():
with gr.Column(scale=3):
result = gr.Image(label=korean_labels["Generated Image"], show_label=False, interactive=False)
with gr.Column(scale=1):
prompt = gr.Text(
label=korean_labels["Prompt"],
placeholder="μƒμ„±ν•˜κ³  싢은 이미지λ₯Ό μ„€λͺ…ν•˜μ„Έμš”...",
lines=3,
show_label=False,
container=False,
)
enhanceBtn = gr.Button(f"πŸš€ {korean_labels['Enhance Image']}")
with gr.Column(korean_labels["Advanced Options"]):
with gr.Row():
latency = gr.Text(show_label=False)
with gr.Row():
seed = gr.Number(label=korean_labels["Seed"], value=42, precision=0)
randomize_seed = gr.Checkbox(label=korean_labels["Randomize Seed"], value=False)
with gr.Row():
width = gr.Slider(label=korean_labels["Width"], minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_WIDTH)
height = gr.Slider(label=korean_labels["Height"], minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_HEIGHT)
num_inference_steps = gr.Slider(label=korean_labels["Inference Steps"], minimum=1, maximum=4, step=1, value=DEFAULT_INFERENCE_STEPS)
with gr.Row():
gr.Markdown(f"### 🌟 {korean_labels['Inspiration Gallery']}")
with gr.Row():
gr.Examples(
examples=examples,
fn=generate_image,
inputs=[prompt],
outputs=[result, seed],
cache_examples="lazy"
)
# Event handling - Trigger image generation on button click or input change
enhanceBtn.click(
fn=generate_image,
inputs=[prompt, seed, width, height],
outputs=[result, seed, latency],
show_progress="hidden",
show_api=False,
queue=False
)
gr.on(
triggers=[prompt.input, width.input, height.input, num_inference_steps.input],
fn=generate_image,
inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps],
outputs=[result, seed, latency],
show_progress="hidden",
show_api=False,
trigger_mode="always_last",
queue=False
)
# Launch the app
demo.launch()