Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -9,8 +9,8 @@ from diffusers import DiffusionPipeline
|
|
9 |
from custom_pipeline import FLUXPipelineWithIntermediateOutputs
|
10 |
from transformers import pipeline
|
11 |
|
12 |
-
# Translation model loading
|
13 |
-
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
14 |
|
15 |
# Constants
|
16 |
MAX_SEED = np.iinfo(np.int32).max
|
@@ -18,13 +18,19 @@ MAX_IMAGE_SIZE = 2048
|
|
18 |
DEFAULT_WIDTH = 1024
|
19 |
DEFAULT_HEIGHT = 1024
|
20 |
DEFAULT_INFERENCE_STEPS = 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
dtype = torch.float16
|
24 |
-
pipe = FLUXPipelineWithIntermediateOutputs.from_pretrained(
|
25 |
-
"black-forest-labs/FLUX.1-schnell", torch_dtype=dtype
|
26 |
-
).to("cuda")
|
27 |
-
torch.cuda.empty_cache()
|
28 |
|
29 |
# Menu labels dictionary
|
30 |
english_labels = {
|
@@ -41,36 +47,67 @@ english_labels = {
|
|
41 |
}
|
42 |
|
43 |
def translate_if_korean(text):
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
def generate_example_image(prompt):
|
73 |
-
|
|
|
|
|
|
|
|
|
74 |
|
75 |
# Example prompts
|
76 |
examples = [
|
@@ -88,12 +125,14 @@ footer {
|
|
88 |
}
|
89 |
"""
|
90 |
|
91 |
-
# --- Gradio UI ---
|
92 |
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
93 |
with gr.Column(elem_id="app-container"):
|
94 |
with gr.Row():
|
95 |
with gr.Column(scale=3):
|
96 |
-
result = gr.Image(label=english_labels["Generated Image"],
|
|
|
|
|
97 |
with gr.Column(scale=1):
|
98 |
prompt = gr.Text(
|
99 |
label=english_labels["Prompt"],
|
@@ -108,25 +147,53 @@ with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
|
108 |
with gr.Row():
|
109 |
latency = gr.Text(show_label=False)
|
110 |
with gr.Row():
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
with gr.Row():
|
114 |
-
width = gr.Slider(
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
with gr.Row():
|
119 |
gr.Markdown(f"### 🌟 {english_labels['Inspiration Gallery']}")
|
120 |
with gr.Row():
|
121 |
gr.Examples(
|
122 |
examples=examples,
|
123 |
-
fn=generate_example_image,
|
124 |
inputs=[prompt],
|
125 |
outputs=[result, seed],
|
126 |
-
cache_examples=False
|
127 |
)
|
128 |
|
129 |
-
# Event handling
|
130 |
enhanceBtn.click(
|
131 |
fn=generate_image,
|
132 |
inputs=[prompt, seed, width, height],
|
@@ -136,9 +203,17 @@ with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
|
136 |
queue=False
|
137 |
)
|
138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
gr.on(
|
140 |
triggers=[prompt.input, width.input, height.input, num_inference_steps.input],
|
141 |
-
fn=
|
142 |
inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps],
|
143 |
outputs=[result, seed, latency],
|
144 |
show_progress="hidden",
|
@@ -147,4 +222,5 @@ with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
|
147 |
queue=False
|
148 |
)
|
149 |
|
150 |
-
|
|
|
|
9 |
from custom_pipeline import FLUXPipelineWithIntermediateOutputs
|
10 |
from transformers import pipeline
|
11 |
|
12 |
+
# Translation model loading with device specification
|
13 |
+
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device="cpu")
|
14 |
|
15 |
# Constants
|
16 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
18 |
DEFAULT_WIDTH = 1024
|
19 |
DEFAULT_HEIGHT = 1024
|
20 |
DEFAULT_INFERENCE_STEPS = 1
|
21 |
+
GPU_DURATION = 15 # Reduced from 25 to stay within quota
|
22 |
+
|
23 |
+
# Device and model setup with memory optimization
|
24 |
+
def setup_model():
|
25 |
+
dtype = torch.float16
|
26 |
+
pipe = FLUXPipelineWithIntermediateOutputs.from_pretrained(
|
27 |
+
"black-forest-labs/FLUX.1-schnell",
|
28 |
+
torch_dtype=dtype,
|
29 |
+
device_map="auto" # Enable model parallelism
|
30 |
+
)
|
31 |
+
return pipe
|
32 |
|
33 |
+
pipe = setup_model()
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
# Menu labels dictionary
|
36 |
english_labels = {
|
|
|
47 |
}
|
48 |
|
49 |
def translate_if_korean(text):
|
50 |
+
"""Safely translate Korean text to English."""
|
51 |
+
try:
|
52 |
+
if any('\u3131' <= char <= '\u3163' or '\uac00' <= char <= '\ud7a3' for char in text):
|
53 |
+
return translator(text)[0]['translation_text']
|
54 |
+
return text
|
55 |
+
except Exception as e:
|
56 |
+
print(f"Translation error: {e}")
|
57 |
+
return text
|
58 |
+
|
59 |
+
# Modified inference function with error handling and memory management
|
60 |
+
@spaces.GPU(duration=GPU_DURATION)
|
61 |
+
def generate_image(prompt, seed=None, width=DEFAULT_WIDTH, height=DEFAULT_HEIGHT,
|
62 |
+
randomize_seed=True, num_inference_steps=DEFAULT_INFERENCE_STEPS):
|
63 |
+
try:
|
64 |
+
# Input validation
|
65 |
+
if not isinstance(seed, (int, type(None))):
|
66 |
+
seed = None
|
67 |
+
randomize_seed = True
|
68 |
+
|
69 |
+
prompt = translate_if_korean(prompt)
|
70 |
+
|
71 |
+
if seed is None or randomize_seed:
|
72 |
+
seed = random.randint(0, MAX_SEED)
|
73 |
+
|
74 |
+
# Ensure valid dimensions
|
75 |
+
width = min(max(256, width), MAX_IMAGE_SIZE)
|
76 |
+
height = min(max(256, height), MAX_IMAGE_SIZE)
|
77 |
+
|
78 |
+
generator = torch.Generator().manual_seed(seed)
|
79 |
+
|
80 |
+
start_time = time.time()
|
81 |
+
|
82 |
+
with torch.cuda.amp.autocast(): # Enable automatic mixed precision
|
83 |
+
for img in pipe.generate_images(
|
84 |
+
prompt=prompt,
|
85 |
+
guidance_scale=0,
|
86 |
+
num_inference_steps=num_inference_steps,
|
87 |
+
width=width,
|
88 |
+
height=height,
|
89 |
+
generator=generator
|
90 |
+
):
|
91 |
+
latency = f"Processing Time: {(time.time()-start_time):.2f} seconds"
|
92 |
+
|
93 |
+
# Clear CUDA cache after generation
|
94 |
+
if torch.cuda.is_available():
|
95 |
+
torch.cuda.empty_cache()
|
96 |
+
|
97 |
+
yield img, seed, latency
|
98 |
+
|
99 |
+
except Exception as e:
|
100 |
+
print(f"Error in generate_image: {e}")
|
101 |
+
# Return a blank image or error message
|
102 |
+
yield None, seed, f"Error: {str(e)}"
|
103 |
+
|
104 |
+
# Example generator with error handling
|
105 |
def generate_example_image(prompt):
|
106 |
+
try:
|
107 |
+
return next(generate_image(prompt, randomize_seed=True))
|
108 |
+
except Exception as e:
|
109 |
+
print(f"Error in example generation: {e}")
|
110 |
+
return None, None, f"Error: {str(e)}"
|
111 |
|
112 |
# Example prompts
|
113 |
examples = [
|
|
|
125 |
}
|
126 |
"""
|
127 |
|
128 |
+
# --- Gradio UI with improved error handling ---
|
129 |
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
130 |
with gr.Column(elem_id="app-container"):
|
131 |
with gr.Row():
|
132 |
with gr.Column(scale=3):
|
133 |
+
result = gr.Image(label=english_labels["Generated Image"],
|
134 |
+
show_label=False,
|
135 |
+
interactive=False)
|
136 |
with gr.Column(scale=1):
|
137 |
prompt = gr.Text(
|
138 |
label=english_labels["Prompt"],
|
|
|
147 |
with gr.Row():
|
148 |
latency = gr.Text(show_label=False)
|
149 |
with gr.Row():
|
150 |
+
# Modified Number component with proper validation
|
151 |
+
seed = gr.Number(
|
152 |
+
label=english_labels["Seed"],
|
153 |
+
value=42,
|
154 |
+
precision=0,
|
155 |
+
minimum=0,
|
156 |
+
maximum=MAX_SEED
|
157 |
+
)
|
158 |
+
randomize_seed = gr.Checkbox(
|
159 |
+
label=english_labels["Randomize Seed"],
|
160 |
+
value=True
|
161 |
+
)
|
162 |
with gr.Row():
|
163 |
+
width = gr.Slider(
|
164 |
+
label=english_labels["Width"],
|
165 |
+
minimum=256,
|
166 |
+
maximum=MAX_IMAGE_SIZE,
|
167 |
+
step=32,
|
168 |
+
value=DEFAULT_WIDTH
|
169 |
+
)
|
170 |
+
height = gr.Slider(
|
171 |
+
label=english_labels["Height"],
|
172 |
+
minimum=256,
|
173 |
+
maximum=MAX_IMAGE_SIZE,
|
174 |
+
step=32,
|
175 |
+
value=DEFAULT_HEIGHT
|
176 |
+
)
|
177 |
+
num_inference_steps = gr.Slider(
|
178 |
+
label=english_labels["Inference Steps"],
|
179 |
+
minimum=1,
|
180 |
+
maximum=4,
|
181 |
+
step=1,
|
182 |
+
value=DEFAULT_INFERENCE_STEPS
|
183 |
+
)
|
184 |
|
185 |
with gr.Row():
|
186 |
gr.Markdown(f"### 🌟 {english_labels['Inspiration Gallery']}")
|
187 |
with gr.Row():
|
188 |
gr.Examples(
|
189 |
examples=examples,
|
190 |
+
fn=generate_example_image,
|
191 |
inputs=[prompt],
|
192 |
outputs=[result, seed],
|
193 |
+
cache_examples=False
|
194 |
)
|
195 |
|
196 |
+
# Event handling with improved error handling
|
197 |
enhanceBtn.click(
|
198 |
fn=generate_image,
|
199 |
inputs=[prompt, seed, width, height],
|
|
|
203 |
queue=False
|
204 |
)
|
205 |
|
206 |
+
# Modified event handler with proper input validation
|
207 |
+
def validated_generate(*args):
|
208 |
+
try:
|
209 |
+
return next(generate_image(*args))
|
210 |
+
except Exception as e:
|
211 |
+
print(f"Error in validated_generate: {e}")
|
212 |
+
return None, args[1], f"Error: {str(e)}"
|
213 |
+
|
214 |
gr.on(
|
215 |
triggers=[prompt.input, width.input, height.input, num_inference_steps.input],
|
216 |
+
fn=validated_generate,
|
217 |
inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps],
|
218 |
outputs=[result, seed, latency],
|
219 |
show_progress="hidden",
|
|
|
222 |
queue=False
|
223 |
)
|
224 |
|
225 |
+
if __name__ == "__main__":
|
226 |
+
demo.launch()
|