Yanzuo commited on
Commit
176edce
·
verified ·
1 Parent(s): 60fd701

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +62 -132
app.py CHANGED
@@ -1,146 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
- import numpy as np
3
- import random
4
- from diffusers import DiffusionPipeline
5
  import torch
 
6
 
7
- device = "cuda" if torch.cuda.is_available() else "cpu"
8
 
9
- if torch.cuda.is_available():
10
- torch.cuda.max_memory_allocated(device=device)
11
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
12
- pipe.enable_xformers_memory_efficient_attention()
13
- pipe = pipe.to(device)
14
- else:
15
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
16
- pipe = pipe.to(device)
17
 
18
- MAX_SEED = np.iinfo(np.int32).max
19
- MAX_IMAGE_SIZE = 1024
 
20
 
21
- def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
 
 
22
 
23
- if randomize_seed:
24
- seed = random.randint(0, MAX_SEED)
25
-
26
- generator = torch.Generator().manual_seed(seed)
27
-
28
- image = pipe(
29
- prompt = prompt,
30
- negative_prompt = negative_prompt,
31
- guidance_scale = guidance_scale,
32
- num_inference_steps = num_inference_steps,
33
- width = width,
34
- height = height,
35
- generator = generator
36
- ).images[0]
37
-
38
- return image
39
 
40
- examples = [
41
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
42
- "An astronaut riding a green horse",
43
- "A delicious ceviche cheesecake slice",
44
- ]
45
 
46
- css="""
47
- #col-container {
48
- margin: 0 auto;
49
- max-width: 520px;
50
- }
51
- """
 
 
 
 
 
 
 
 
52
 
53
- if torch.cuda.is_available():
54
- power_device = "GPU"
55
- else:
56
- power_device = "CPU"
 
 
 
 
 
 
 
 
57
 
58
- with gr.Blocks(css=css) as demo:
59
-
60
- with gr.Column(elem_id="col-container"):
61
- gr.Markdown(f"""
62
- # Text-to-Image Gradio Template
63
- Currently running on {power_device}.
64
- """)
65
-
66
- with gr.Row():
67
-
68
- prompt = gr.Text(
69
- label="Prompt",
70
- show_label=False,
71
- max_lines=1,
72
- placeholder="Enter your prompt",
73
- container=False,
74
- )
75
-
76
- run_button = gr.Button("Run", scale=0)
77
-
78
- result = gr.Image(label="Result", show_label=False)
79
 
80
- with gr.Accordion("Advanced Settings", open=False):
81
-
82
- negative_prompt = gr.Text(
83
- label="Negative prompt",
84
- max_lines=1,
85
- placeholder="Enter a negative prompt",
86
- visible=False,
87
- )
88
-
89
- seed = gr.Slider(
90
- label="Seed",
91
- minimum=0,
92
- maximum=MAX_SEED,
93
- step=1,
94
- value=0,
95
- )
96
-
97
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
98
-
99
- with gr.Row():
100
-
101
- width = gr.Slider(
102
- label="Width",
103
- minimum=256,
104
- maximum=MAX_IMAGE_SIZE,
105
- step=32,
106
- value=512,
107
- )
108
-
109
- height = gr.Slider(
110
- label="Height",
111
- minimum=256,
112
- maximum=MAX_IMAGE_SIZE,
113
- step=32,
114
- value=512,
115
- )
116
-
117
- with gr.Row():
118
-
119
- guidance_scale = gr.Slider(
120
- label="Guidance scale",
121
- minimum=0.0,
122
- maximum=10.0,
123
- step=0.1,
124
- value=0.0,
125
- )
126
-
127
- num_inference_steps = gr.Slider(
128
- label="Number of inference steps",
129
- minimum=1,
130
- maximum=12,
131
- step=1,
132
- value=2,
133
- )
134
-
135
- gr.Examples(
136
- examples = examples,
137
- inputs = [prompt]
138
- )
139
 
140
- run_button.click(
141
- fn = infer,
142
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
143
- outputs = [result]
144
- )
145
 
146
- demo.queue().launch()
 
 
1
+ import spaces
2
+ import argparse
3
+ import os
4
+ import time
5
+ from os import path
6
+ from safetensors.torch import load_file
7
+ from huggingface_hub import hf_hub_download
8
+
9
+ cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
10
+ os.environ["TRANSFORMERS_CACHE"] = cache_path
11
+ os.environ["HF_HUB_CACHE"] = cache_path
12
+ os.environ["HF_HOME"] = cache_path
13
+
14
  import gradio as gr
 
 
 
15
  import torch
16
+ from diffusers import FluxPipeline
17
 
18
+ torch.backends.cuda.matmul.allow_tf32 = True
19
 
20
+ class timer:
21
+ def __init__(self, method_name="timed process"):
22
+ self.method = method_name
 
 
 
 
 
23
 
24
+ def __enter__(self):
25
+ self.start = time.time()
26
+ print(f"{self.method} starts")
27
 
28
+ def __exit__(self, exc_type, exc_val, exc_tb):
29
+ end = time.time()
30
+ print(f"{self.method} took {str(round(end - self.start, 2))}s")
31
 
32
+ if not path.exists(cache_path):
33
+ os.makedirs(cache_path, exist_ok=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
 
35
+ pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
36
+ pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"))
37
+ pipe.fuse_lora(lora_scale=0.125)
38
+ pipe.to(device="cuda", dtype=torch.bfloat16)
 
39
 
40
+ with gr.Blocks() as demo:
41
+ with gr.Column():
42
+ with gr.Row():
43
+ with gr.Column():
44
+ num_images = gr.Slider(label="Number of Images", minimum=1, maximum=8, step=1, value=4, interactive=True)
45
+ height = gr.Number(label="Image Height", value=1024, interactive=True)
46
+ width = gr.Number(label="Image Width", value=1024, interactive=True)
47
+ # steps = gr.Slider(label="Inference Steps", minimum=1, maximum=8, step=1, value=1, interactive=True)
48
+ # eta = gr.Number(label="Eta (Corresponds to parameter eta (η) in the DDIM paper, i.e. 0.0 eqauls DDIM, 1.0 equals LCM)", value=1., interactive=True)
49
+ prompt = gr.Text(label="Prompt", value="a photo of a cat", interactive=True)
50
+ seed = gr.Number(label="Seed", value=3413, interactive=True)
51
+ btn = gr.Button(value="run")
52
+ with gr.Column():
53
+ output = gr.Gallery(height=1024)
54
 
55
+ @spaces.GPU
56
+ def process_image(num_images, height, width, prompt, seed):
57
+ global pipe
58
+ with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
59
+ return pipe(
60
+ prompt=[prompt]*num_images,
61
+ generator=torch.Generator().manual_seed(int(seed)),
62
+ num_inference_steps=8,
63
+ guidance_scale=3.5,
64
+ height=int(height),
65
+ width=int(width)
66
+ ).images
67
 
68
+ reactive_controls = [num_images, height, width, prompt, seed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69
 
70
+ # for control in reactive_controls:
71
+ # control.change(fn=process_image, inputs=reactive_controls, outputs=[output])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
 
73
+ btn.click(process_image, inputs=reactive_controls, outputs=[output])
 
 
 
 
74
 
75
+ if __name__ == "__main__":
76
+ demo.launch()