Spaces:
Running
Running
import os | |
import gradio as gr | |
import networkx as nx | |
import matplotlib.pyplot as plt | |
from langchain_experimental.graph_transformers import LLMGraphTransformer | |
from langchain.chains import GraphQAChain | |
from langchain_core.documents import Document | |
from langchain_community.graphs.networkx_graph import NetworkxEntityGraph | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain_groq import ChatGroq | |
import pandas as pd | |
from gradio_client import Client | |
import numpy as np | |
from PIL import Image as PILImage | |
import base64 | |
from io import BytesIO | |
# Set the base directory | |
BASE_DIR = os.getcwd() | |
GROQ_API_KEY = os.environ.get('GROQ_API_KEY') | |
# Set up LLM and Flux client | |
llm = ChatGroq(temperature=0, model_name='llama-3.1-8b-instant', groq_api_key=GROQ_API_KEY) | |
flux_client = Client("black-forest-labs/Flux.1-schnell") | |
def create_graph(text): | |
documents = [Document(page_content=text)] | |
llm_transformer_filtered = LLMGraphTransformer(llm=llm) | |
graph_documents_filtered = llm_transformer_filtered.convert_to_graph_documents(documents) | |
graph = NetworkxEntityGraph() | |
for node in graph_documents_filtered[0].nodes: | |
graph.add_node(node.id) | |
for edge in graph_documents_filtered[0].relationships: | |
graph._graph.add_edge( | |
edge.source.id, | |
edge.target.id, | |
relation=edge.type | |
) | |
return graph, graph_documents_filtered | |
def visualize_graph(graph): | |
plt.figure(figsize=(12, 8)) | |
pos = nx.spring_layout(graph._graph) | |
nx.draw(graph._graph, pos, with_labels=True, node_color='lightblue', node_size=500, font_size=8, font_weight='bold') | |
edge_labels = nx.get_edge_attributes(graph._graph, 'relation') | |
nx.draw_networkx_edge_labels(graph._graph, pos, edge_labels=edge_labels, font_size=6) | |
plt.title("Graph Visualization") | |
plt.axis('off') | |
# Save the plot as an image file | |
graph_viz_path = os.path.join(BASE_DIR, 'graph_visualization.png') | |
plt.savefig(graph_viz_path) | |
plt.close() | |
return graph_viz_path | |
def generate_image(prompt): | |
try: | |
print(f"Generating image with prompt: {prompt}") | |
result = flux_client.predict( | |
prompt=prompt, | |
seed=0, | |
randomize_seed=True, | |
width=1024, | |
height=1024, | |
num_inference_steps=4, | |
api_name="/infer" | |
) | |
if isinstance(result, tuple) and len(result) > 0 and isinstance(result[0], str): | |
img_str = result[0] | |
# Fix padding if necessary | |
missing_padding = len(img_str) % 4 | |
if missing_padding: | |
img_str += '=' * (4 - missing_padding) | |
img_data = base64.b64decode(img_str) | |
image = PILImage.open(BytesIO(img_data)) | |
elif isinstance(result, tuple) and len(result) > 0 and isinstance(result[0], np.ndarray): | |
image = PILImage.fromarray((result[0] * 255).astype(np.uint8)) | |
elif isinstance(result, PILImage.Image): | |
image = result | |
else: | |
raise ValueError(f"Unexpected result format from flux_client.predict: {type(result)}") | |
image_path = os.path.join(BASE_DIR, 'generated_image.png') | |
image.save(image_path) | |
print(f"Image saved to: {image_path}") | |
return image_path | |
except Exception as e: | |
print(f"Error in generate_image: {str(e)}") | |
import traceback | |
traceback.print_exc() | |
return None | |
def create_relations_table(graph_documents_filtered): | |
df = pd.DataFrame(columns=['node1', 'node2', 'relation']) | |
for edge in graph_documents_filtered[0].relationships: | |
df = pd.concat([df, pd.DataFrame({'node1': [edge.source.id], 'node2': [edge.target.id], 'relation': [edge.type]})], ignore_index=True) | |
return df | |
def process_text(text, question): | |
try: | |
print("Creating graph...") | |
graph, graph_documents_filtered = create_graph(text) | |
print("Setting up GraphQAChain...") | |
graph_rag = GraphQAChain.from_llm( | |
llm=llm, | |
graph=graph, | |
verbose=True | |
) | |
print("Running question through GraphQAChain...") | |
answer = graph_rag.run(question) | |
print(f"Answer: {answer}") | |
print("Visualizing graph...") | |
graph_viz_path = visualize_graph(graph) | |
print(f"Graph visualization saved to: {graph_viz_path}") | |
print("Creating relations table...") | |
relations_table = create_relations_table(graph_documents_filtered) | |
print("Relations table created") | |
print("Generating summary...") | |
summary_prompt = f"Summarize the following text in one sentence: {text}" | |
summary = llm.invoke(summary_prompt).content | |
print(f"Summary: {summary}") | |
print("Generating image...") | |
image_path = generate_image(summary) | |
if image_path and os.path.exists(image_path): | |
print(f"Generated image saved to: {image_path}") | |
else: | |
print("Failed to generate or save image") | |
return answer, graph_viz_path, relations_table, summary, image_path | |
except Exception as e: | |
print(f"An error occurred in process_text: {str(e)}") | |
import traceback | |
traceback.print_exc() | |
return str(e), None, None, str(e), None | |
def ui_function(text, question): | |
answer, graph_viz_path, relations_table, summary, image_path = process_text(text, question) | |
if isinstance(answer, str) and answer.startswith("An error occurred"): | |
return answer, None, None, answer, None | |
return answer, graph_viz_path, relations_table, summary, image_path | |
# Example text | |
example_text = """The Apollo 11 mission, launched by NASA in July 1969, was the first manned mission to land on the Moon. Commanded by Neil Armstrong and piloted by Buzz Aldrin and Michael Collins, it was the culmination of the Space Race between the United States and the Soviet Union. On July 20, 1969, Armstrong and Aldrin became the first humans to set foot on the lunar surface, while Collins orbited above in the command module.""" | |
# Create Gradio interface | |
with gr.Blocks() as iface: | |
with gr.Row(): | |
with gr.Column(): | |
input_text = gr.Textbox(label="Input Text", lines=6, placeholder="Enter your text here...") | |
question = gr.Textbox(label="Question", lines=1, placeholder="Ask a question about the text...") | |
example_box = gr.Markdown(f"### Example Paragraph\n\nUse the following paragraph as a sample input:\n\n{example_text}") | |
graph_viz = gr.Image(label="Graph Visualization", type="filepath") | |
with gr.Column(): | |
answer = gr.Textbox(label="Answer", lines=3, placeholder="The answer will appear here.") | |
relations_table = gr.Dataframe(label="Relations Table", headers=["Node 1", "Node 2", "Relation"], interactive=False) | |
summary = gr.Textbox(label="Summary", lines=2, placeholder="Summary of the input text will appear here.") | |
generated_image = gr.Image(label="Generated Image", type="filepath") | |
gr.Markdown(""" | |
### Instructions to Use the App: | |
1. **Input Text:** Enter the text you want to analyze in the "Input Text" field. | |
2. **Ask a Question:** Enter a question related to the text in the "Question" field. | |
3. **Run the Analysis:** Click the "Run" button to analyze the text. | |
4. **View Results:** | |
- The "Answer" field will display the response to your question. | |
- The "Graph Visualization" will show a graphical representation of entities and their relationships in the text. | |
- The "Relations Table" will display extracted relationships in tabular form. | |
- The "Summary" field will provide a concise summary of the input text. | |
- The "Generated Image" will depict a visual representation based on the summarized text. | |
**Example:** Use the provided example paragraph for a quick demo of the app. | |
""") | |
gr.Button("Run").click(ui_function, inputs=[input_text, question], outputs=[answer, graph_viz, relations_table, summary, generated_image]) | |
footer_text = """ | |
<footer> | |
<p>If you enjoyed the functionality of the app, please leave a like!<br> | |
Check out more on <a href="https://www.linkedin.com/in/girish-wangikar/" target="_blank">LinkedIn</a> | | |
<a href="https://girishwangikar.github.io/Girish_Wangikar_Portfolio.github.io/" target="_blank">Portfolio</a></p> | |
</footer> | |
""" | |
gr.Markdown(footer_text) | |
iface.launch() | |