File size: 6,012 Bytes
cfa1f4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "from sklearn.dummy import DummyRegressor\n",
    "from nltk.corpus import stopwords\n",
    "from textblob import TextBlob\n",
    "import textstat\n",
    "from sklearn.feature_extraction.text import TfidfVectorizer\n",
    "from sklearn import svm\n",
    "from sklearn.linear_model import LinearRegression\n",
    "from sklearn.feature_selection import SelectKBest\n",
    "import pandas as pd\n",
    "from util import escape_tags_and_content, escape_tags, escape_strings, escape_links, escape_hex_character_codes, escape_punctuation_boundaries, escape_odd_spaces\n",
    "from sklearn.model_selection import RepeatedKFold\n",
    "from sklearn.svm import SVR\n",
    "from sklearn.model_selection import GridSearchCV\n",
    "import numpy as np\n",
    "import util"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "def gerar_metricas(project_name):\n",
    "\n",
    "    # carregando os dados\n",
    "    df = pd.read_csv(\"database\\\\tawos\\\\deep\\\\{}_deep-se.csv\".format(project_name))\n",
    "\n",
    "    # criação de uma nova coluna\n",
    "    df[\"context\"] = df[\"title\"] + df[\"description\"]\n",
    "\n",
    "    # pré-processamento\n",
    "    df[\"context\"] = df[\"context\"].apply(lambda x: escape_tags_and_content(x))\n",
    "    df[\"context\"] = df[\"context\"].apply(lambda x: escape_tags(x))\n",
    "    df[\"context\"] = df[\"context\"].apply(lambda x: escape_strings(x))\n",
    "    df[\"context\"] = df[\"context\"].apply(lambda x: escape_links(x))\n",
    "    df[\"context\"] = df[\"context\"].apply(lambda x: escape_hex_character_codes(x))\n",
    "    df[\"context\"] = df[\"context\"].apply(lambda x: escape_punctuation_boundaries(x))\n",
    "    df[\"context\"] = df[\"context\"].apply(lambda x: escape_odd_spaces(x))\n",
    "\n",
    "    # removendo stop-words\n",
    "    stop = stopwords.words('english')\n",
    "    df['context'] = df['context'].apply(lambda x: ' '.join([word for word in x.split() if word not in (stop)]))\n",
    "\n",
    "    # renomeando as colunas porque senão dá um problema com a extração de features do NEOSP\n",
    "    df = df.rename(columns={ \"issuekey\": \"issuekey_\", \"created\": \"created_\", \"description\": \"description_\", \"title\": \"title_\", \"context\": \"context_\", \"storypoint\": \"storypoint_\"})\n",
    "    y = df[\"storypoint_\"]\n",
    "    df = df.drop(columns=['storypoint_'])\n",
    "\n",
    "    # 5º coluna -> extração das features para o neosp\n",
    "    df[\"gunning_fog_\"] = df['context_'].apply(textstat.gunning_fog)\n",
    "    df[\"flesch_reading_ease_\"] = df['context_'].apply(textstat.flesch_reading_ease)\n",
    "    df[\"flesch_kincaid_grade_\"] = df['context_'].apply(textstat.flesch_kincaid_grade)\n",
    "    df[\"smog_index_\"] = df['context_'].apply(textstat.smog_index)\n",
    "    df[\"coleman_liau_index_\"] = df['context_'].apply(textstat.coleman_liau_index)\n",
    "    df[\"automated_readability_index_\"] = df['context_'].apply(textstat.automated_readability_index)\n",
    "    df[\"dale_chall_readability_score_\"] = df['context_'].apply(textstat.dale_chall_readability_score)\n",
    "    df[\"difficult_words_\"] = df['context_'].apply(textstat.difficult_words)\n",
    "    df[\"linsear_write_formula_\"] = df['context_'].apply(textstat.linsear_write_formula)\n",
    "    df[\"polarity_\"] = df[\"context_\"].apply(lambda x: TextBlob(x).sentiment.polarity)\n",
    "    df[\"subjectivity_\"] = df[\"context_\"].apply(lambda x: TextBlob(x).sentiment.subjectivity)\n",
    "    # 16º colunas\n",
    "\n",
    "    # Extração das features para o TFIDF\n",
    "    vectorizer = TfidfVectorizer()\n",
    "    X_vec = vectorizer.fit_transform(df[\"context_\"])\n",
    "\n",
    "    df_vec = pd.DataFrame(data = X_vec.toarray(), columns = vectorizer.get_feature_names_out())\n",
    "\n",
    "    # Juntando as features do neosp com o tfidf\n",
    "    df = df.join(df_vec)\n",
    "    X = df\n",
    "   \n",
    "    grid = GridSearchCV(\n",
    "            estimator=SVR(kernel='rbf'),\n",
    "            param_grid={\n",
    "                'C': [1.1, 5.4, 170, 1001],\n",
    "                'epsilon': [0.0003, 0.007, 0.0109, 0.019, 0.14, 0.05, 8, 0.2, 3, 2, 7],\n",
    "                'gamma': [0.7001, 0.008, 0.001, 3.1, 1, 1.3, 5]\n",
    "            }, \n",
    "            cv=10, scoring='neg_mean_squared_error', verbose=0, n_jobs=-1)\n",
    "\n",
    "    #print the best parameters from all possible combinations\n",
    "    grid.fit(X[X.columns[5:16]], y)\n",
    "    print(grid.best_params_)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'C': 5.4, 'epsilon': 0.2, 'gamma': 5}\n",
      "{'C': 1.1, 'epsilon': 2, 'gamma': 0.7001}\n"
     ]
    }
   ],
   "source": [
    "import pandas as pd\n",
    "\n",
    "LIBRARIES = [\"ALOY\", \"CLI\"]\n",
    "             #\"APSTUD\", \n",
    "             #\"CLOV\", \"COMPASS\", \"CONFCLOUD\", \"CONFSERVER\", \"DAEMON\", \"DM\", \"DNN\", \"DURACLOUD\", \"EVG\", \"FAB\", \n",
    "             #\"MDL\", \"MESOS\" ,\"MULE\", \"NEXUS\", \"SERVER\", \"STL\", \"TIDOC\", \"TIMOB\", \"TISTUD\", \"XD\"]\n",
    "\n",
    "for lp in LIBRARIES:\n",
    "    gerar_metricas(lp)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.11"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}