File size: 8,576 Bytes
cfa1f4f
 
 
 
a51c8fe
cfa1f4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a51c8fe
cfa1f4f
 
 
 
 
a51c8fe
 
 
 
 
 
 
 
 
cfa1f4f
 
 
 
a51c8fe
cfa1f4f
 
 
 
 
 
 
 
 
 
 
 
a51c8fe
 
 
 
cfa1f4f
a51c8fe
cfa1f4f
 
a51c8fe
 
 
cfa1f4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a51c8fe
 
 
 
 
 
 
cfa1f4f
a51c8fe
 
 
 
 
 
cfa1f4f
a51c8fe
 
 
cfa1f4f
 
a51c8fe
cfa1f4f
 
 
 
a51c8fe
cfa1f4f
 
 
 
 
a51c8fe
 
 
 
 
 
 
 
cfa1f4f
a51c8fe
 
cfa1f4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "from sklearn.dummy import DummyRegressor\n",
    "from nltk.corpus import stopwords\n",
    "from textblob import TextBlob\n",
    "import textstat\n",
    "from sklearn.feature_extraction.text import TfidfVectorizer\n",
    "from sklearn import svm\n",
    "from sklearn.linear_model import LinearRegression\n",
    "from sklearn.feature_selection import SelectKBest\n",
    "import pandas as pd\n",
    "from util import escape_tags_and_content, escape_tags, escape_strings, escape_links, escape_hex_character_codes, escape_punctuation_boundaries, escape_odd_spaces\n",
    "from sklearn.model_selection import cross_val_score\n",
    "from sklearn.model_selection import RepeatedKFold\n",
    "from sklearn.pipeline import make_pipeline\n",
    "from sklearn.preprocessing import StandardScaler\n",
    "from sklearn.feature_selection import f_classif, f_regression"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "def gerar_metricas(project_name):\n",
    "\n",
    "    ########## SE FOR TAWOS DESCOMENTAR\n",
    "    # df = pd.read_csv(\"database\\\\tawos\\\\deep\\\\{}_deep-se.csv\".format(project_name))\n",
    "    \n",
    "    ########## SE FOR NEODATASET, SE FOR TAWOS REMOVER\n",
    "    df = pd.read_json(\"database\\\\neo\\\\json\\\\{}.json\".format(project_name))\n",
    "    \n",
    "    ########## SE FOR NEODATASET, SE FOR TAWOS REMOVER\n",
    "    df = df.rename(columns={ \"id\": \"issuekey\", \"created_at\": \"created\", \"weight\": \"storypoint\"})\n",
    "    \n",
    "    # criação de uma nova coluna\n",
    "    df[\"context\"] = df[\"title\"] + df[\"description\"]\n",
    "\n",
    "    # pré-processamento\n",
    "    df['context'] = df['context'].astype(str)\n",
    "    df[\"context\"] = df[\"context\"].apply(lambda x: escape_tags_and_content(x))\n",
    "    df[\"context\"] = df[\"context\"].apply(lambda x: escape_tags(x))\n",
    "    df[\"context\"] = df[\"context\"].apply(lambda x: escape_strings(x))\n",
    "    df[\"context\"] = df[\"context\"].apply(lambda x: escape_links(x))\n",
    "    df[\"context\"] = df[\"context\"].apply(lambda x: escape_hex_character_codes(x))\n",
    "    df[\"context\"] = df[\"context\"].apply(lambda x: escape_punctuation_boundaries(x))\n",
    "    df[\"context\"] = df[\"context\"].apply(lambda x: escape_odd_spaces(x))\n",
    "\n",
    "    # removendo stop-words\n",
    "    stop = stopwords.words('english')\n",
    "    df['context'] = df['context'].apply(lambda x: ' '.join([word for word in x.split() if word not in (stop)]))\n",
    "\n",
    "    # SE FOR TAWOS renomeando as colunas porque senão dá um problema com a extração de features do NEOSP\n",
    "    #df = df.rename(columns={ \"issuekey\": \"issuekey_\", \"created\": \"created_\", \"description\": \"description_\", \"title\": \"title_\", \"context\": \"context_\", \"storypoint\": \"storypoint_\"})\n",
    "    \n",
    "    ########## SE FOR NEODATASET, SE FOR TAWOS REMOVER\n",
    "    df = df.rename(columns={ \"issuekey\": \"issuekey_\", \"created\": \"created_\", \"description\": \"description_\", \"title\": \"title_\", \"context\": \"context_\", \"storypoint\": \"storypoint_\"})\n",
    "    \n",
    "    y = df[\"storypoint_\"]\n",
    "    df = df.drop(columns=['storypoint_'])\n",
    "    \n",
    "    ########## SE FOR NEODATASET, SE FOR TAWOS REMOVER\n",
    "    df = df[[\"issuekey_\", \"created_\", \"title_\", \"description_\", \"context_\"]]\n",
    "\n",
    "    # 5º coluna -> extração das features para o neosp\n",
    "    df[\"gunning_fog_\"] = df['context_'].apply(textstat.gunning_fog)\n",
    "    df[\"flesch_reading_ease_\"] = df['context_'].apply(textstat.flesch_reading_ease)\n",
    "    df[\"flesch_kincaid_grade_\"] = df['context_'].apply(textstat.flesch_kincaid_grade)\n",
    "    df[\"smog_index_\"] = df['context_'].apply(textstat.smog_index)\n",
    "    df[\"coleman_liau_index_\"] = df['context_'].apply(textstat.coleman_liau_index)\n",
    "    df[\"automated_readability_index_\"] = df['context_'].apply(textstat.automated_readability_index)\n",
    "    df[\"dale_chall_readability_score_\"] = df['context_'].apply(textstat.dale_chall_readability_score)\n",
    "    df[\"difficult_words_\"] = df['context_'].apply(textstat.difficult_words)\n",
    "    df[\"linsear_write_formula_\"] = df['context_'].apply(textstat.linsear_write_formula)\n",
    "    df[\"polarity_\"] = df[\"context_\"].apply(lambda x: TextBlob(x).sentiment.polarity)\n",
    "    df[\"subjectivity_\"] = df[\"context_\"].apply(lambda x: TextBlob(x).sentiment.subjectivity)\n",
    "    # 16º colunas\n",
    "\n",
    "    # Extração das features para o TFIDF\n",
    "    vectorizer = TfidfVectorizer()\n",
    "    X_vec = vectorizer.fit_transform(df[\"context_\"])\n",
    "\n",
    "    df_vec = pd.DataFrame(data = X_vec.toarray(), columns = vectorizer.get_feature_names_out())\n",
    "\n",
    "    # Juntando as features do neosp com o tfidf\n",
    "    df = df.join(df_vec)\n",
    "    X = df\n",
    "\n",
    "    rkf = RepeatedKFold(n_splits=10, n_repeats=30, random_state=2652124)\n",
    "    \n",
    "    list_results_MAE_MbR, list_results_MAE_NEOSP, list_results_TFIDF_MbR = list(), list(), list()\n",
    "    ### Dummy\n",
    "    model = DummyRegressor(strategy=\"mean\")\n",
    "    list_results_MAE_MbR = cross_val_score(model, X[X.columns[5:6]], y, cv = rkf, scoring=\"neg_mean_absolute_error\")\n",
    "    df_results_MAE_MbR = pd.DataFrame(list_results_MAE_MbR, columns = [\"MAE\"])\n",
    "    df_results_MAE_MbR = df_results_MAE_MbR.apply(lambda x: x*-1)\n",
    "    df_results_MAE_MbR.to_csv(\"metricas/metricas_{}_MbR.csv\".format(project_name),index = False, header=False)\n",
    "    \n",
    "    ##### NEOSP\n",
    "    model = make_pipeline(StandardScaler(), svm.SVR())\n",
    "    list_results_MAE_NEOSP = cross_val_score(model, X[X.columns[5:16]], y, cv = rkf, scoring=\"neg_mean_absolute_error\")\n",
    "    df_results_MAE_NEOSP = pd.DataFrame(list_results_MAE_NEOSP, columns = [\"MAE\"])\n",
    "    df_results_MAE_NEOSP = df_results_MAE_NEOSP.apply(lambda x: x*-1)\n",
    "    df_results_MAE_NEOSP.to_csv(\"metricas/metricas_{}_NEOSP_SVR.csv\".format(project_name), index = False, header=False)\n",
    "    \n",
    "    #### TFIDF\n",
    "    model = make_pipeline(SelectKBest(f_regression, k=50), StandardScaler(), svm.SVR())\n",
    "    list_results_TFIDF_MbR = cross_val_score(model, X[X.columns[16:]], y, cv = rkf, scoring=\"neg_mean_absolute_error\")\n",
    "    df_results_MAE_TFIDF = pd.DataFrame(list_results_TFIDF_MbR, columns = [\"MAE\"])\n",
    "    df_results_MAE_TFIDF = df_results_MAE_TFIDF.apply(lambda x: x*-1)\n",
    "    df_results_MAE_TFIDF.to_csv(\"metricas/metricas_{}_TFIDF.csv\".format(project_name),index = False, header=False)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "\n",
    "#LIBRARIES_TAWOS = [\"ALOY\", \"APSTUD\", \"CLI\", \"CLOV\", \"COMPASS\", \"CONFCLOUD\", \"CONFSERVER\", \"DAEMON\", \"DM\", \"DNN\", \"DURACLOUD\", \"EVG\", \"FAB\", \n",
    "             #\"MDL\", \"MESOS\" ,\"MULE\", \"NEXUS\", \"SERVER\", \"STL\", \"TIDOC\", \"TIMOB\", \"TISTUD\", \"XD\"]\n",
    "\n",
    "#LIBRARIES_NEO = [\"7764\", \"250833\", \"734943\", \"2009901\", \"2670515\", \"3828396\",\"3836952\", \n",
    "#                 \"4456656\", \"5261717\", \"6206924\", \"7071551\", \"7128869\",\"7603319\", \n",
    "#                 \"7776928\", \"10152778\",\"10171263\", \"10171270\", \"10171280\", \"10174980\", \n",
    "#                 \"12450835\",\"12584701\",\"12894267\", \"14052249\",\"14976868\", \"15502567\",\n",
    "#                 \"19921167\",  \"21149814\", \"23285197\", \"28419588\",\"28644964\",  \"28847821\"]\n",
    "\n",
    "#for project_name in LIBRARIES_NEO:\n",
    "#    gerar_metricas(project_name)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.11"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}