File size: 3,876 Bytes
b444daa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a51c8fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b444daa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 83,
   "metadata": {},
   "outputs": [],
   "source": [
    "import csv\n",
    "\n",
    "list_output_ALOY_MbR = []\n",
    "with open(\"metricas_ALOY_MbR.csv\", \"r\") as arquivo:\n",
    "    arquivo_csv = csv.reader(arquivo)\n",
    "    for i, linha in enumerate(arquivo_csv):\n",
    "        list_output_ALOY_MbR.append(float(linha[0]))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 86,
   "metadata": {},
   "outputs": [],
   "source": [
    " list_output_ALOY_NEOSP_SVR = []\n",
    "with open(\"metricas_ALOY_NEOSP_SVR.csv\", \"r\") as arquivo:\n",
    "    arquivo_csv = csv.reader(arquivo)\n",
    "    for i, linha in enumerate(arquivo_csv):\n",
    "        list_output_ALOY_NEOSP_SVR.append(float(linha[0]))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 87,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "1.5313348545588383"
      ]
     },
     "execution_count": 87,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import numpy as np\n",
    "\n",
    "np.mean(list_output_ALOY_NEOSP_SVR)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from sklearn.dummy import DummyRegressor\n",
    "from nltk.corpus import stopwords\n",
    "from textblob import TextBlob\n",
    "import textstat\n",
    "from sklearn.feature_extraction.text import TfidfVectorizer\n",
    "from sklearn import svm\n",
    "from sklearn.linear_model import LinearRegression\n",
    "from sklearn.feature_selection import SelectKBest\n",
    "import pandas as pd\n",
    "from util import escape_tags_and_content, escape_tags, escape_strings, escape_links, escape_hex_character_codes, escape_punctuation_boundaries, escape_odd_spaces\n",
    "from sklearn.model_selection import cross_val_score\n",
    "from sklearn.model_selection import RepeatedKFold\n",
    "from sklearn.pipeline import make_pipeline\n",
    "from sklearn.preprocessing import StandardScaler\n",
    "from sklearn.feature_selection import f_classif, f_regression\n",
    "from sklearn.pipeline import Pipeline"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "project_name = \"7764\"\n",
    "\n",
    "df = pd.read_json(\"database\\\\neo\\\\json\\\\{}.json\".format(project_name))\n",
    "\n",
    "def extract_leg_features():\n",
    "    return \"Extract Leg, Sent, Subj Features\"\n",
    "    \n",
    "# pipeline = Pipeline(\n",
    "#     [\n",
    "#         (\"vect\", Tfi()),\n",
    "#         #(\"red\", SelectKBest(f_regression, k=50)),\n",
    "#         (\"scaler\", StandardScaler()),\n",
    "#         (\"clf\",  svm.SVR()),\n",
    "#     ]\n",
    "# )\n",
    "# pipeline\n",
    "\n",
    "# pipeline = Pipeline(\n",
    "#     [\n",
    "#         (\"vect\", extract_leg_features()),\n",
    "#         (\"red\", SelectKBest(f_regression, k=50)),\n",
    "#         (\"scaler\", StandardScaler()),\n",
    "#         (\"clf\",  svm.SVR()),\n",
    "#     ]\n",
    "# )\n",
    "# pipeline\n",
    "\n",
    "\n",
    "pipeline = Pipeline(\n",
    "    [        \n",
    "        (\"clf\",  DummyRegressor(strategy=\"mean\")),\n",
    "    ]\n",
    ")\n",
    "pipeline\n",
    "\n",
    "\n",
    "    "
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.11"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}