giseldo commited on
Commit
5a8a0ea
·
1 Parent(s): cadbc00

ultima versao

Browse files
__pycache__/helpers.cpython-310.pyc ADDED
Binary file (4.81 kB). View file
 
app.py ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+ import plotly.express as px
4
+ import matplotlib.pyplot as plt
5
+ import statistics
6
+
7
+ LIBRARIES = ["ALOY", "APSTUD", "CLI", "TIMOB", "XD"]
8
+
9
+ def grafico(list_output_mean, list_output_neosp, nome_projeto, pip_choices):
10
+ list_output_mean = [3.152778, 3.375000, 1.423820, 1.052039, 1.297747, 1.224785, 2.250000, 2.375000, 1.540773, 1.847639, 1.491953, 1.052039, 0.983369, 1.669528, 1.665236, 1.412554, 1.375000, 1.078326, 1.556330, 1.625000, 1.860515, 1.491953, 1.160944, 1.675966, 1.987661, 2.369099, 1.431867, 1.944742, 2.329399, 1.925429]
11
+ list_output_NEOSP = [3.191631, 3.417342, 1.202562, 0.867979, 1.225224, 1.028501, 2.165318, 2.291910, 1.141041, 1.785504, 1.086850, 0.875381, 0.714992, 1.604599, 1.833541, 0.860600, 1.393656, 1.152935, 1.364006, 1.647414, 1.527748, 1.236909, 1.403306, 1.655692, 1.770828, 1.937058, 0.861534, 1.341726, 1.904503, 1.449757]
12
+ list_results = [ ["Median Regressor", statistics.mean(list_output_mean)], ["NEOSP-SVR Regressor", statistics.mean(list_output_NEOSP)] ]
13
+ fig, (ax1, ax2) = plt.subplots(1, 2)
14
+ # ax1
15
+ if "Median Regressor" in pip_choices:
16
+ df_list_output_mean = pd.DataFrame(list_output_mean, columns=["MAE"])
17
+ ax1.plot(df_list_output_mean.index, df_list_output_mean["MAE"], label="Median Regressor")
18
+ if "NEOSP-SVR Regressor" in pip_choices:
19
+ df_list_output_NEOSP = pd.DataFrame(list_output_NEOSP, columns=["MAE"])
20
+ ax1.plot(df_list_output_NEOSP.index, df_list_output_NEOSP["MAE"], label="NEOSP-SVR Regressor")
21
+ ax1.set_xlabel("Index Execução")
22
+ ax1.set_ylabel("MAE")
23
+ ax1.legend()
24
+ # ax2
25
+ if "Median Regressor" or "NEOSP-SVR Regressor" in pip_choices:
26
+ df = pd.DataFrame(list_results, columns = ["Model","MAE"])
27
+ if "Median Regressor" in pip_choices:
28
+ ax2.bar(df["Model"].iloc[[0]], df["MAE"].iloc[[0]])
29
+ if "NEOSP-SVR Regressor" in pip_choices:
30
+ ax2.bar(df["Model"].iloc[[1]], df["MAE"].iloc[[1]])
31
+ if "NEOSP-SVR Regressor" and "NEOSP-SVR Regressor" in pip_choices:
32
+ ax2.bar(df["Model"], df["MAE"])
33
+ if "Median Regressor" or "NEOSP-SVR Regressor" in pip_choices:
34
+ ax2.set_ylabel("MAE Médio")
35
+ ax2.set_xlabel("Modelos")
36
+ # graficos geral
37
+ fig.set_figwidth(15)
38
+ fig.set_figheight(4)
39
+ fig.suptitle("Projeto {}".format(nome_projeto))
40
+ return gr.update(value=plt, visible=True)
41
+
42
+ def create_pip_plot(libraries, pip_choices):
43
+ if "ALOY" in libraries:
44
+ list_output_ALOY_mean = [3.152778, 3.375000, 1.423820, 1.052039, 1.297747, 1.224785, 2.250000, 2.375000, 1.540773, 1.847639, 1.491953, 1.052039, 0.983369, 1.669528, 1.665236, 1.412554, 1.375000, 1.078326, 1.556330, 1.625000, 1.860515, 1.491953, 1.160944, 1.675966, 1.987661, 2.369099, 1.431867, 1.944742, 2.329399, 1.925429]
45
+ list_output_ALOY_NEOSP = [3.191631, 3.417342, 1.202562, 0.867979, 1.225224, 1.028501, 2.165318, 2.291910, 1.141041, 1.785504, 1.086850, 0.875381, 0.714992, 1.604599, 1.833541, 0.860600, 1.393656, 1.152935, 1.364006, 1.647414, 1.527748, 1.236909, 1.403306, 1.655692, 1.770828, 1.937058, 0.861534, 1.341726, 1.904503, 1.449757]
46
+ return grafico(list_output_ALOY_mean, list_output_ALOY_NEOSP, "ALOY", pip_choices)
47
+ elif "APSTUD" in libraries:
48
+ list_output_ALOY_mean = [3.152778, 3.375000, 1.423820, 1.052039, 1.297747, 1.224785, 2.250000, 2.375000, 1.540773, 1.847639, 1.491953, 1.052039, 0.983369, 1.669528, 1.665236, 1.412554, 1.375000, 1.078326, 1.556330, 1.625000, 1.860515, 1.491953, 1.160944, 1.675966, 1.987661, 2.369099, 1.431867, 1.944742, 2.329399, 1.925429]
49
+ list_output_ALOY_NEOSP = [3.191631, 3.417342, 1.202562, 0.867979, 1.225224, 1.028501, 2.165318, 2.291910, 1.141041, 1.785504, 1.086850, 0.875381, 0.714992, 1.604599, 1.833541, 0.860600, 1.393656, 1.152935, 1.364006, 1.647414, 1.527748, 1.236909, 1.403306, 1.655692, 1.770828, 1.937058, 0.861534, 1.341726, 1.904503, 1.449757]
50
+ return grafico(list_output_ALOY_mean, list_output_ALOY_NEOSP, "APSTUD", pip_choices)
51
+ elif "CLI" in libraries:
52
+ list_output_ALOY_mean = [3.152778, 3.375000, 1.423820, 1.052039, 1.297747, 1.224785, 2.250000, 2.375000, 1.540773, 1.847639, 1.491953, 1.052039, 0.983369, 1.669528, 1.665236, 1.412554, 1.375000, 1.078326, 1.556330, 1.625000, 1.860515, 1.491953, 1.160944, 1.675966, 1.987661, 2.369099, 1.431867, 1.944742, 2.329399, 1.925429]
53
+ list_output_ALOY_NEOSP = [3.191631, 3.417342, 1.202562, 0.867979, 1.225224, 1.028501, 2.165318, 2.291910, 1.141041, 1.785504, 1.086850, 0.875381, 0.714992, 1.604599, 1.833541, 0.860600, 1.393656, 1.152935, 1.364006, 1.647414, 1.527748, 1.236909, 1.403306, 1.655692, 1.770828, 1.937058, 0.861534, 1.341726, 1.904503, 1.449757]
54
+ return grafico(list_output_ALOY_mean, list_output_ALOY_NEOSP, "CLI", pip_choices)
55
+ elif "TIMOB" in libraries:
56
+ list_output_ALOY_mean = [3.152778, 3.375000, 1.423820, 1.052039, 1.297747, 1.224785, 2.250000, 2.375000, 1.540773, 1.847639, 1.491953, 1.052039, 0.983369, 1.669528, 1.665236, 1.412554, 1.375000, 1.078326, 1.556330, 1.625000, 1.860515, 1.491953, 1.160944, 1.675966, 1.987661, 2.369099, 1.431867, 1.944742, 2.329399, 1.925429]
57
+ list_output_ALOY_NEOSP = [3.191631, 3.417342, 1.202562, 0.867979, 1.225224, 1.028501, 2.165318, 2.291910, 1.141041, 1.785504, 1.086850, 0.875381, 0.714992, 1.604599, 1.833541, 0.860600, 1.393656, 1.152935, 1.364006, 1.647414, 1.527748, 1.236909, 1.403306, 1.655692, 1.770828, 1.937058, 0.861534, 1.341726, 1.904503, 1.449757]
58
+ return grafico(list_output_ALOY_mean, list_output_ALOY_NEOSP, "TIMOB", pip_choices)
59
+ elif "XD" in libraries:
60
+ list_output_ALOY_mean = [3.152778, 3.375000, 1.423820, 1.052039, 1.297747, 1.224785, 2.250000, 2.375000, 1.540773, 1.847639, 1.491953, 1.052039, 0.983369, 1.669528, 1.665236, 1.412554, 1.375000, 1.078326, 1.556330, 1.625000, 1.860515, 1.491953, 1.160944, 1.675966, 1.987661, 2.369099, 1.431867, 1.944742, 2.329399, 1.925429]
61
+ list_output_ALOY_NEOSP = [3.191631, 3.417342, 1.202562, 0.867979, 1.225224, 1.028501, 2.165318, 2.291910, 1.141041, 1.785504, 1.086850, 0.875381, 0.714992, 1.604599, 1.833541, 0.860600, 1.393656, 1.152935, 1.364006, 1.647414, 1.527748, 1.236909, 1.403306, 1.655692, 1.770828, 1.937058, 0.861534, 1.341726, 1.904503, 1.449757]
62
+ return grafico(list_output_ALOY_mean, list_output_ALOY_NEOSP, "XD", pip_choices)
63
+ else:
64
+ return gr.update(visible=True)
65
+
66
+ with gr.Blocks() as demo:
67
+ with gr.Row():
68
+ with gr.Column():
69
+ gr.Markdown("## Conjunto de Dados")
70
+ libraries = gr.Dropdown(choices=LIBRARIES, label="Projeto", value= "ALOY")
71
+ with gr.Column():
72
+ gr.Markdown("## Gráficos")
73
+ pip = gr.CheckboxGroup(choices=["Median Regressor", "NEOSP-SVR Regressor"], label="Modelos Preditivos")
74
+ #stars = gr.CheckboxGroup(choices=["Stars", "Week over Week"], label="")
75
+ #issues = gr.CheckboxGroup(choices=["Issue", "Exclude org members", "week over week"], label="")
76
+ with gr.Row():
77
+ fetch = gr.Button(value="Fetch")
78
+ with gr.Row():
79
+ with gr.Column():
80
+ pip_plot = gr.Plot(visible=False)
81
+ #star_plot = gr.Plot(visible=False)
82
+ #issue_plot = gr.Plot(visible=False)
83
+
84
+ fetch.click(create_pip_plot, inputs=[libraries, pip], outputs=pip_plot)
85
+ #fetch.click(create_star_plot, inputs=[libraries, pip], outputs=star_plot)
86
+ #fetch.click(create_issue_plot, inputs=[libraries, issues], outputs=issue_plot)
87
+
88
+ if __name__ == "__main__":
89
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ plotly
2
+ helpers