Spaces:
givkashi
/
Runtime error

AK391 commited on
Commit
ff8c072
·
1 Parent(s): b483613
models/.DS_Store ADDED
Binary file (8.2 kB). View file
 
models/ade20k/.DS_Store ADDED
Binary file (6.15 kB). View file
 
models/ade20k/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .base import *
models/ade20k/base.py ADDED
@@ -0,0 +1,627 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Modified from https://github.com/CSAILVision/semantic-segmentation-pytorch"""
2
+
3
+ import os
4
+
5
+ import pandas as pd
6
+ import torch
7
+ import torch.nn as nn
8
+ import torch.nn.functional as F
9
+ from scipy.io import loadmat
10
+ from torch.nn.modules import BatchNorm2d
11
+
12
+ from . import resnet
13
+ from . import mobilenet
14
+
15
+
16
+ NUM_CLASS = 150
17
+ base_path = os.path.dirname(os.path.abspath(__file__)) # current file path
18
+ colors_path = os.path.join(base_path, 'color150.mat')
19
+ classes_path = os.path.join(base_path, 'object150_info.csv')
20
+
21
+ segm_options = dict(colors=loadmat(colors_path)['colors'],
22
+ classes=pd.read_csv(classes_path),)
23
+
24
+
25
+ class NormalizeTensor:
26
+ def __init__(self, mean, std, inplace=False):
27
+ """Normalize a tensor image with mean and standard deviation.
28
+ .. note::
29
+ This transform acts out of place by default, i.e., it does not mutates the input tensor.
30
+ See :class:`~torchvision.transforms.Normalize` for more details.
31
+ Args:
32
+ tensor (Tensor): Tensor image of size (C, H, W) to be normalized.
33
+ mean (sequence): Sequence of means for each channel.
34
+ std (sequence): Sequence of standard deviations for each channel.
35
+ inplace(bool,optional): Bool to make this operation inplace.
36
+ Returns:
37
+ Tensor: Normalized Tensor image.
38
+ """
39
+
40
+ self.mean = mean
41
+ self.std = std
42
+ self.inplace = inplace
43
+
44
+ def __call__(self, tensor):
45
+ if not self.inplace:
46
+ tensor = tensor.clone()
47
+
48
+ dtype = tensor.dtype
49
+ mean = torch.as_tensor(self.mean, dtype=dtype, device=tensor.device)
50
+ std = torch.as_tensor(self.std, dtype=dtype, device=tensor.device)
51
+ tensor.sub_(mean[None, :, None, None]).div_(std[None, :, None, None])
52
+ return tensor
53
+
54
+
55
+ # Model Builder
56
+ class ModelBuilder:
57
+ # custom weights initialization
58
+ @staticmethod
59
+ def weights_init(m):
60
+ classname = m.__class__.__name__
61
+ if classname.find('Conv') != -1:
62
+ nn.init.kaiming_normal_(m.weight.data)
63
+ elif classname.find('BatchNorm') != -1:
64
+ m.weight.data.fill_(1.)
65
+ m.bias.data.fill_(1e-4)
66
+
67
+ @staticmethod
68
+ def build_encoder(arch='resnet50dilated', fc_dim=512, weights=''):
69
+ pretrained = True if len(weights) == 0 else False
70
+ arch = arch.lower()
71
+ if arch == 'mobilenetv2dilated':
72
+ orig_mobilenet = mobilenet.__dict__['mobilenetv2'](pretrained=pretrained)
73
+ net_encoder = MobileNetV2Dilated(orig_mobilenet, dilate_scale=8)
74
+ elif arch == 'resnet18':
75
+ orig_resnet = resnet.__dict__['resnet18'](pretrained=pretrained)
76
+ net_encoder = Resnet(orig_resnet)
77
+ elif arch == 'resnet18dilated':
78
+ orig_resnet = resnet.__dict__['resnet18'](pretrained=pretrained)
79
+ net_encoder = ResnetDilated(orig_resnet, dilate_scale=8)
80
+ elif arch == 'resnet50dilated':
81
+ orig_resnet = resnet.__dict__['resnet50'](pretrained=pretrained)
82
+ net_encoder = ResnetDilated(orig_resnet, dilate_scale=8)
83
+ elif arch == 'resnet50':
84
+ orig_resnet = resnet.__dict__['resnet50'](pretrained=pretrained)
85
+ net_encoder = Resnet(orig_resnet)
86
+ else:
87
+ raise Exception('Architecture undefined!')
88
+
89
+ # encoders are usually pretrained
90
+ # net_encoder.apply(ModelBuilder.weights_init)
91
+ if len(weights) > 0:
92
+ print('Loading weights for net_encoder')
93
+ net_encoder.load_state_dict(
94
+ torch.load(weights, map_location=lambda storage, loc: storage), strict=False)
95
+ return net_encoder
96
+
97
+ @staticmethod
98
+ def build_decoder(arch='ppm_deepsup',
99
+ fc_dim=512, num_class=NUM_CLASS,
100
+ weights='', use_softmax=False, drop_last_conv=False):
101
+ arch = arch.lower()
102
+ if arch == 'ppm_deepsup':
103
+ net_decoder = PPMDeepsup(
104
+ num_class=num_class,
105
+ fc_dim=fc_dim,
106
+ use_softmax=use_softmax,
107
+ drop_last_conv=drop_last_conv)
108
+ elif arch == 'c1_deepsup':
109
+ net_decoder = C1DeepSup(
110
+ num_class=num_class,
111
+ fc_dim=fc_dim,
112
+ use_softmax=use_softmax,
113
+ drop_last_conv=drop_last_conv)
114
+ else:
115
+ raise Exception('Architecture undefined!')
116
+
117
+ net_decoder.apply(ModelBuilder.weights_init)
118
+ if len(weights) > 0:
119
+ print('Loading weights for net_decoder')
120
+ net_decoder.load_state_dict(
121
+ torch.load(weights, map_location=lambda storage, loc: storage), strict=False)
122
+ return net_decoder
123
+
124
+ @staticmethod
125
+ def get_decoder(weights_path, arch_encoder, arch_decoder, fc_dim, drop_last_conv, *arts, **kwargs):
126
+ path = os.path.join(weights_path, 'ade20k', f'ade20k-{arch_encoder}-{arch_decoder}/decoder_epoch_20.pth')
127
+ return ModelBuilder.build_decoder(arch=arch_decoder, fc_dim=fc_dim, weights=path, use_softmax=True, drop_last_conv=drop_last_conv)
128
+
129
+ @staticmethod
130
+ def get_encoder(weights_path, arch_encoder, arch_decoder, fc_dim, segmentation,
131
+ *arts, **kwargs):
132
+ if segmentation:
133
+ path = os.path.join(weights_path, 'ade20k', f'ade20k-{arch_encoder}-{arch_decoder}/encoder_epoch_20.pth')
134
+ else:
135
+ path = ''
136
+ return ModelBuilder.build_encoder(arch=arch_encoder, fc_dim=fc_dim, weights=path)
137
+
138
+
139
+ def conv3x3_bn_relu(in_planes, out_planes, stride=1):
140
+ return nn.Sequential(
141
+ nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False),
142
+ BatchNorm2d(out_planes),
143
+ nn.ReLU(inplace=True),
144
+ )
145
+
146
+
147
+ class SegmentationModule(nn.Module):
148
+ def __init__(self,
149
+ weights_path,
150
+ num_classes=150,
151
+ arch_encoder="resnet50dilated",
152
+ drop_last_conv=False,
153
+ net_enc=None, # None for Default encoder
154
+ net_dec=None, # None for Default decoder
155
+ encode=None, # {None, 'binary', 'color', 'sky'}
156
+ use_default_normalization=False,
157
+ return_feature_maps=False,
158
+ return_feature_maps_level=3, # {0, 1, 2, 3}
159
+ return_feature_maps_only=True,
160
+ **kwargs,
161
+ ):
162
+ super().__init__()
163
+ self.weights_path = weights_path
164
+ self.drop_last_conv = drop_last_conv
165
+ self.arch_encoder = arch_encoder
166
+ if self.arch_encoder == "resnet50dilated":
167
+ self.arch_decoder = "ppm_deepsup"
168
+ self.fc_dim = 2048
169
+ elif self.arch_encoder == "mobilenetv2dilated":
170
+ self.arch_decoder = "c1_deepsup"
171
+ self.fc_dim = 320
172
+ else:
173
+ raise NotImplementedError(f"No such arch_encoder={self.arch_encoder}")
174
+ model_builder_kwargs = dict(arch_encoder=self.arch_encoder,
175
+ arch_decoder=self.arch_decoder,
176
+ fc_dim=self.fc_dim,
177
+ drop_last_conv=drop_last_conv,
178
+ weights_path=self.weights_path)
179
+
180
+ self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
181
+ self.encoder = ModelBuilder.get_encoder(**model_builder_kwargs) if net_enc is None else net_enc
182
+ self.decoder = ModelBuilder.get_decoder(**model_builder_kwargs) if net_dec is None else net_dec
183
+ self.use_default_normalization = use_default_normalization
184
+ self.default_normalization = NormalizeTensor(mean=[0.485, 0.456, 0.406],
185
+ std=[0.229, 0.224, 0.225])
186
+
187
+ self.encode = encode
188
+
189
+ self.return_feature_maps = return_feature_maps
190
+
191
+ assert 0 <= return_feature_maps_level <= 3
192
+ self.return_feature_maps_level = return_feature_maps_level
193
+
194
+ def normalize_input(self, tensor):
195
+ if tensor.min() < 0 or tensor.max() > 1:
196
+ raise ValueError("Tensor should be 0..1 before using normalize_input")
197
+ return self.default_normalization(tensor)
198
+
199
+ @property
200
+ def feature_maps_channels(self):
201
+ return 256 * 2**(self.return_feature_maps_level) # 256, 512, 1024, 2048
202
+
203
+ def forward(self, img_data, segSize=None):
204
+ if segSize is None:
205
+ raise NotImplementedError("Please pass segSize param. By default: (300, 300)")
206
+
207
+ fmaps = self.encoder(img_data, return_feature_maps=True)
208
+ pred = self.decoder(fmaps, segSize=segSize)
209
+
210
+ if self.return_feature_maps:
211
+ return pred, fmaps
212
+ # print("BINARY", img_data.shape, pred.shape)
213
+ return pred
214
+
215
+ def multi_mask_from_multiclass(self, pred, classes):
216
+ def isin(ar1, ar2):
217
+ return (ar1[..., None] == ar2).any(-1).float()
218
+ return isin(pred, torch.LongTensor(classes).to(self.device))
219
+
220
+ @staticmethod
221
+ def multi_mask_from_multiclass_probs(scores, classes):
222
+ res = None
223
+ for c in classes:
224
+ if res is None:
225
+ res = scores[:, c]
226
+ else:
227
+ res += scores[:, c]
228
+ return res
229
+
230
+ def predict(self, tensor, imgSizes=(-1,), # (300, 375, 450, 525, 600)
231
+ segSize=None):
232
+ """Entry-point for segmentation. Use this methods instead of forward
233
+ Arguments:
234
+ tensor {torch.Tensor} -- BCHW
235
+ Keyword Arguments:
236
+ imgSizes {tuple or list} -- imgSizes for segmentation input.
237
+ default: (300, 450)
238
+ original implementation: (300, 375, 450, 525, 600)
239
+
240
+ """
241
+ if segSize is None:
242
+ segSize = tensor.shape[-2:]
243
+ segSize = (tensor.shape[2], tensor.shape[3])
244
+ with torch.no_grad():
245
+ if self.use_default_normalization:
246
+ tensor = self.normalize_input(tensor)
247
+ scores = torch.zeros(1, NUM_CLASS, segSize[0], segSize[1]).to(self.device)
248
+ features = torch.zeros(1, self.feature_maps_channels, segSize[0], segSize[1]).to(self.device)
249
+
250
+ result = []
251
+ for img_size in imgSizes:
252
+ if img_size != -1:
253
+ img_data = F.interpolate(tensor.clone(), size=img_size)
254
+ else:
255
+ img_data = tensor.clone()
256
+
257
+ if self.return_feature_maps:
258
+ pred_current, fmaps = self.forward(img_data, segSize=segSize)
259
+ else:
260
+ pred_current = self.forward(img_data, segSize=segSize)
261
+
262
+
263
+ result.append(pred_current)
264
+ scores = scores + pred_current / len(imgSizes)
265
+
266
+ # Disclaimer: We use and aggregate only last fmaps: fmaps[3]
267
+ if self.return_feature_maps:
268
+ features = features + F.interpolate(fmaps[self.return_feature_maps_level], size=segSize) / len(imgSizes)
269
+
270
+ _, pred = torch.max(scores, dim=1)
271
+
272
+ if self.return_feature_maps:
273
+ return features
274
+
275
+ return pred, result
276
+
277
+ def get_edges(self, t):
278
+ edge = torch.cuda.ByteTensor(t.size()).zero_()
279
+ edge[:, :, :, 1:] = edge[:, :, :, 1:] | (t[:, :, :, 1:] != t[:, :, :, :-1])
280
+ edge[:, :, :, :-1] = edge[:, :, :, :-1] | (t[:, :, :, 1:] != t[:, :, :, :-1])
281
+ edge[:, :, 1:, :] = edge[:, :, 1:, :] | (t[:, :, 1:, :] != t[:, :, :-1, :])
282
+ edge[:, :, :-1, :] = edge[:, :, :-1, :] | (t[:, :, 1:, :] != t[:, :, :-1, :])
283
+
284
+ if True:
285
+ return edge.half()
286
+ return edge.float()
287
+
288
+
289
+ # pyramid pooling, deep supervision
290
+ class PPMDeepsup(nn.Module):
291
+ def __init__(self, num_class=NUM_CLASS, fc_dim=4096,
292
+ use_softmax=False, pool_scales=(1, 2, 3, 6),
293
+ drop_last_conv=False):
294
+ super().__init__()
295
+ self.use_softmax = use_softmax
296
+ self.drop_last_conv = drop_last_conv
297
+
298
+ self.ppm = []
299
+ for scale in pool_scales:
300
+ self.ppm.append(nn.Sequential(
301
+ nn.AdaptiveAvgPool2d(scale),
302
+ nn.Conv2d(fc_dim, 512, kernel_size=1, bias=False),
303
+ BatchNorm2d(512),
304
+ nn.ReLU(inplace=True)
305
+ ))
306
+ self.ppm = nn.ModuleList(self.ppm)
307
+ self.cbr_deepsup = conv3x3_bn_relu(fc_dim // 2, fc_dim // 4, 1)
308
+
309
+ self.conv_last = nn.Sequential(
310
+ nn.Conv2d(fc_dim + len(pool_scales) * 512, 512,
311
+ kernel_size=3, padding=1, bias=False),
312
+ BatchNorm2d(512),
313
+ nn.ReLU(inplace=True),
314
+ nn.Dropout2d(0.1),
315
+ nn.Conv2d(512, num_class, kernel_size=1)
316
+ )
317
+ self.conv_last_deepsup = nn.Conv2d(fc_dim // 4, num_class, 1, 1, 0)
318
+ self.dropout_deepsup = nn.Dropout2d(0.1)
319
+
320
+ def forward(self, conv_out, segSize=None):
321
+ conv5 = conv_out[-1]
322
+
323
+ input_size = conv5.size()
324
+ ppm_out = [conv5]
325
+ for pool_scale in self.ppm:
326
+ ppm_out.append(nn.functional.interpolate(
327
+ pool_scale(conv5),
328
+ (input_size[2], input_size[3]),
329
+ mode='bilinear', align_corners=False))
330
+ ppm_out = torch.cat(ppm_out, 1)
331
+
332
+ if self.drop_last_conv:
333
+ return ppm_out
334
+ else:
335
+ x = self.conv_last(ppm_out)
336
+
337
+ if self.use_softmax: # is True during inference
338
+ x = nn.functional.interpolate(
339
+ x, size=segSize, mode='bilinear', align_corners=False)
340
+ x = nn.functional.softmax(x, dim=1)
341
+ return x
342
+
343
+ # deep sup
344
+ conv4 = conv_out[-2]
345
+ _ = self.cbr_deepsup(conv4)
346
+ _ = self.dropout_deepsup(_)
347
+ _ = self.conv_last_deepsup(_)
348
+
349
+ x = nn.functional.log_softmax(x, dim=1)
350
+ _ = nn.functional.log_softmax(_, dim=1)
351
+
352
+ return (x, _)
353
+
354
+
355
+ class Resnet(nn.Module):
356
+ def __init__(self, orig_resnet):
357
+ super(Resnet, self).__init__()
358
+
359
+ # take pretrained resnet, except AvgPool and FC
360
+ self.conv1 = orig_resnet.conv1
361
+ self.bn1 = orig_resnet.bn1
362
+ self.relu1 = orig_resnet.relu1
363
+ self.conv2 = orig_resnet.conv2
364
+ self.bn2 = orig_resnet.bn2
365
+ self.relu2 = orig_resnet.relu2
366
+ self.conv3 = orig_resnet.conv3
367
+ self.bn3 = orig_resnet.bn3
368
+ self.relu3 = orig_resnet.relu3
369
+ self.maxpool = orig_resnet.maxpool
370
+ self.layer1 = orig_resnet.layer1
371
+ self.layer2 = orig_resnet.layer2
372
+ self.layer3 = orig_resnet.layer3
373
+ self.layer4 = orig_resnet.layer4
374
+
375
+ def forward(self, x, return_feature_maps=False):
376
+ conv_out = []
377
+
378
+ x = self.relu1(self.bn1(self.conv1(x)))
379
+ x = self.relu2(self.bn2(self.conv2(x)))
380
+ x = self.relu3(self.bn3(self.conv3(x)))
381
+ x = self.maxpool(x)
382
+
383
+ x = self.layer1(x); conv_out.append(x);
384
+ x = self.layer2(x); conv_out.append(x);
385
+ x = self.layer3(x); conv_out.append(x);
386
+ x = self.layer4(x); conv_out.append(x);
387
+
388
+ if return_feature_maps:
389
+ return conv_out
390
+ return [x]
391
+
392
+ # Resnet Dilated
393
+ class ResnetDilated(nn.Module):
394
+ def __init__(self, orig_resnet, dilate_scale=8):
395
+ super().__init__()
396
+ from functools import partial
397
+
398
+ if dilate_scale == 8:
399
+ orig_resnet.layer3.apply(
400
+ partial(self._nostride_dilate, dilate=2))
401
+ orig_resnet.layer4.apply(
402
+ partial(self._nostride_dilate, dilate=4))
403
+ elif dilate_scale == 16:
404
+ orig_resnet.layer4.apply(
405
+ partial(self._nostride_dilate, dilate=2))
406
+
407
+ # take pretrained resnet, except AvgPool and FC
408
+ self.conv1 = orig_resnet.conv1
409
+ self.bn1 = orig_resnet.bn1
410
+ self.relu1 = orig_resnet.relu1
411
+ self.conv2 = orig_resnet.conv2
412
+ self.bn2 = orig_resnet.bn2
413
+ self.relu2 = orig_resnet.relu2
414
+ self.conv3 = orig_resnet.conv3
415
+ self.bn3 = orig_resnet.bn3
416
+ self.relu3 = orig_resnet.relu3
417
+ self.maxpool = orig_resnet.maxpool
418
+ self.layer1 = orig_resnet.layer1
419
+ self.layer2 = orig_resnet.layer2
420
+ self.layer3 = orig_resnet.layer3
421
+ self.layer4 = orig_resnet.layer4
422
+
423
+ def _nostride_dilate(self, m, dilate):
424
+ classname = m.__class__.__name__
425
+ if classname.find('Conv') != -1:
426
+ # the convolution with stride
427
+ if m.stride == (2, 2):
428
+ m.stride = (1, 1)
429
+ if m.kernel_size == (3, 3):
430
+ m.dilation = (dilate // 2, dilate // 2)
431
+ m.padding = (dilate // 2, dilate // 2)
432
+ # other convoluions
433
+ else:
434
+ if m.kernel_size == (3, 3):
435
+ m.dilation = (dilate, dilate)
436
+ m.padding = (dilate, dilate)
437
+
438
+ def forward(self, x, return_feature_maps=False):
439
+ conv_out = []
440
+
441
+ x = self.relu1(self.bn1(self.conv1(x)))
442
+ x = self.relu2(self.bn2(self.conv2(x)))
443
+ x = self.relu3(self.bn3(self.conv3(x)))
444
+ x = self.maxpool(x)
445
+
446
+ x = self.layer1(x)
447
+ conv_out.append(x)
448
+ x = self.layer2(x)
449
+ conv_out.append(x)
450
+ x = self.layer3(x)
451
+ conv_out.append(x)
452
+ x = self.layer4(x)
453
+ conv_out.append(x)
454
+
455
+ if return_feature_maps:
456
+ return conv_out
457
+ return [x]
458
+
459
+ class MobileNetV2Dilated(nn.Module):
460
+ def __init__(self, orig_net, dilate_scale=8):
461
+ super(MobileNetV2Dilated, self).__init__()
462
+ from functools import partial
463
+
464
+ # take pretrained mobilenet features
465
+ self.features = orig_net.features[:-1]
466
+
467
+ self.total_idx = len(self.features)
468
+ self.down_idx = [2, 4, 7, 14]
469
+
470
+ if dilate_scale == 8:
471
+ for i in range(self.down_idx[-2], self.down_idx[-1]):
472
+ self.features[i].apply(
473
+ partial(self._nostride_dilate, dilate=2)
474
+ )
475
+ for i in range(self.down_idx[-1], self.total_idx):
476
+ self.features[i].apply(
477
+ partial(self._nostride_dilate, dilate=4)
478
+ )
479
+ elif dilate_scale == 16:
480
+ for i in range(self.down_idx[-1], self.total_idx):
481
+ self.features[i].apply(
482
+ partial(self._nostride_dilate, dilate=2)
483
+ )
484
+
485
+ def _nostride_dilate(self, m, dilate):
486
+ classname = m.__class__.__name__
487
+ if classname.find('Conv') != -1:
488
+ # the convolution with stride
489
+ if m.stride == (2, 2):
490
+ m.stride = (1, 1)
491
+ if m.kernel_size == (3, 3):
492
+ m.dilation = (dilate//2, dilate//2)
493
+ m.padding = (dilate//2, dilate//2)
494
+ # other convoluions
495
+ else:
496
+ if m.kernel_size == (3, 3):
497
+ m.dilation = (dilate, dilate)
498
+ m.padding = (dilate, dilate)
499
+
500
+ def forward(self, x, return_feature_maps=False):
501
+ if return_feature_maps:
502
+ conv_out = []
503
+ for i in range(self.total_idx):
504
+ x = self.features[i](x)
505
+ if i in self.down_idx:
506
+ conv_out.append(x)
507
+ conv_out.append(x)
508
+ return conv_out
509
+
510
+ else:
511
+ return [self.features(x)]
512
+
513
+
514
+ # last conv, deep supervision
515
+ class C1DeepSup(nn.Module):
516
+ def __init__(self, num_class=150, fc_dim=2048, use_softmax=False, drop_last_conv=False):
517
+ super(C1DeepSup, self).__init__()
518
+ self.use_softmax = use_softmax
519
+ self.drop_last_conv = drop_last_conv
520
+
521
+ self.cbr = conv3x3_bn_relu(fc_dim, fc_dim // 4, 1)
522
+ self.cbr_deepsup = conv3x3_bn_relu(fc_dim // 2, fc_dim // 4, 1)
523
+
524
+ # last conv
525
+ self.conv_last = nn.Conv2d(fc_dim // 4, num_class, 1, 1, 0)
526
+ self.conv_last_deepsup = nn.Conv2d(fc_dim // 4, num_class, 1, 1, 0)
527
+
528
+ def forward(self, conv_out, segSize=None):
529
+ conv5 = conv_out[-1]
530
+
531
+ x = self.cbr(conv5)
532
+
533
+ if self.drop_last_conv:
534
+ return x
535
+ else:
536
+ x = self.conv_last(x)
537
+
538
+ if self.use_softmax: # is True during inference
539
+ x = nn.functional.interpolate(
540
+ x, size=segSize, mode='bilinear', align_corners=False)
541
+ x = nn.functional.softmax(x, dim=1)
542
+ return x
543
+
544
+ # deep sup
545
+ conv4 = conv_out[-2]
546
+ _ = self.cbr_deepsup(conv4)
547
+ _ = self.conv_last_deepsup(_)
548
+
549
+ x = nn.functional.log_softmax(x, dim=1)
550
+ _ = nn.functional.log_softmax(_, dim=1)
551
+
552
+ return (x, _)
553
+
554
+
555
+ # last conv
556
+ class C1(nn.Module):
557
+ def __init__(self, num_class=150, fc_dim=2048, use_softmax=False):
558
+ super(C1, self).__init__()
559
+ self.use_softmax = use_softmax
560
+
561
+ self.cbr = conv3x3_bn_relu(fc_dim, fc_dim // 4, 1)
562
+
563
+ # last conv
564
+ self.conv_last = nn.Conv2d(fc_dim // 4, num_class, 1, 1, 0)
565
+
566
+ def forward(self, conv_out, segSize=None):
567
+ conv5 = conv_out[-1]
568
+ x = self.cbr(conv5)
569
+ x = self.conv_last(x)
570
+
571
+ if self.use_softmax: # is True during inference
572
+ x = nn.functional.interpolate(
573
+ x, size=segSize, mode='bilinear', align_corners=False)
574
+ x = nn.functional.softmax(x, dim=1)
575
+ else:
576
+ x = nn.functional.log_softmax(x, dim=1)
577
+
578
+ return x
579
+
580
+
581
+ # pyramid pooling
582
+ class PPM(nn.Module):
583
+ def __init__(self, num_class=150, fc_dim=4096,
584
+ use_softmax=False, pool_scales=(1, 2, 3, 6)):
585
+ super(PPM, self).__init__()
586
+ self.use_softmax = use_softmax
587
+
588
+ self.ppm = []
589
+ for scale in pool_scales:
590
+ self.ppm.append(nn.Sequential(
591
+ nn.AdaptiveAvgPool2d(scale),
592
+ nn.Conv2d(fc_dim, 512, kernel_size=1, bias=False),
593
+ BatchNorm2d(512),
594
+ nn.ReLU(inplace=True)
595
+ ))
596
+ self.ppm = nn.ModuleList(self.ppm)
597
+
598
+ self.conv_last = nn.Sequential(
599
+ nn.Conv2d(fc_dim+len(pool_scales)*512, 512,
600
+ kernel_size=3, padding=1, bias=False),
601
+ BatchNorm2d(512),
602
+ nn.ReLU(inplace=True),
603
+ nn.Dropout2d(0.1),
604
+ nn.Conv2d(512, num_class, kernel_size=1)
605
+ )
606
+
607
+ def forward(self, conv_out, segSize=None):
608
+ conv5 = conv_out[-1]
609
+
610
+ input_size = conv5.size()
611
+ ppm_out = [conv5]
612
+ for pool_scale in self.ppm:
613
+ ppm_out.append(nn.functional.interpolate(
614
+ pool_scale(conv5),
615
+ (input_size[2], input_size[3]),
616
+ mode='bilinear', align_corners=False))
617
+ ppm_out = torch.cat(ppm_out, 1)
618
+
619
+ x = self.conv_last(ppm_out)
620
+
621
+ if self.use_softmax: # is True during inference
622
+ x = nn.functional.interpolate(
623
+ x, size=segSize, mode='bilinear', align_corners=False)
624
+ x = nn.functional.softmax(x, dim=1)
625
+ else:
626
+ x = nn.functional.log_softmax(x, dim=1)
627
+ return x
models/ade20k/color150.mat ADDED
Binary file (502 Bytes). View file
 
models/ade20k/mobilenet.py ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This MobileNetV2 implementation is modified from the following repository:
3
+ https://github.com/tonylins/pytorch-mobilenet-v2
4
+ """
5
+
6
+ import torch.nn as nn
7
+ import math
8
+ from .utils import load_url
9
+ from .segm_lib.nn import SynchronizedBatchNorm2d
10
+
11
+ BatchNorm2d = SynchronizedBatchNorm2d
12
+
13
+
14
+ __all__ = ['mobilenetv2']
15
+
16
+
17
+ model_urls = {
18
+ 'mobilenetv2': 'http://sceneparsing.csail.mit.edu/model/pretrained_resnet/mobilenet_v2.pth.tar',
19
+ }
20
+
21
+
22
+ def conv_bn(inp, oup, stride):
23
+ return nn.Sequential(
24
+ nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
25
+ BatchNorm2d(oup),
26
+ nn.ReLU6(inplace=True)
27
+ )
28
+
29
+
30
+ def conv_1x1_bn(inp, oup):
31
+ return nn.Sequential(
32
+ nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
33
+ BatchNorm2d(oup),
34
+ nn.ReLU6(inplace=True)
35
+ )
36
+
37
+
38
+ class InvertedResidual(nn.Module):
39
+ def __init__(self, inp, oup, stride, expand_ratio):
40
+ super(InvertedResidual, self).__init__()
41
+ self.stride = stride
42
+ assert stride in [1, 2]
43
+
44
+ hidden_dim = round(inp * expand_ratio)
45
+ self.use_res_connect = self.stride == 1 and inp == oup
46
+
47
+ if expand_ratio == 1:
48
+ self.conv = nn.Sequential(
49
+ # dw
50
+ nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
51
+ BatchNorm2d(hidden_dim),
52
+ nn.ReLU6(inplace=True),
53
+ # pw-linear
54
+ nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
55
+ BatchNorm2d(oup),
56
+ )
57
+ else:
58
+ self.conv = nn.Sequential(
59
+ # pw
60
+ nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
61
+ BatchNorm2d(hidden_dim),
62
+ nn.ReLU6(inplace=True),
63
+ # dw
64
+ nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
65
+ BatchNorm2d(hidden_dim),
66
+ nn.ReLU6(inplace=True),
67
+ # pw-linear
68
+ nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
69
+ BatchNorm2d(oup),
70
+ )
71
+
72
+ def forward(self, x):
73
+ if self.use_res_connect:
74
+ return x + self.conv(x)
75
+ else:
76
+ return self.conv(x)
77
+
78
+
79
+ class MobileNetV2(nn.Module):
80
+ def __init__(self, n_class=1000, input_size=224, width_mult=1.):
81
+ super(MobileNetV2, self).__init__()
82
+ block = InvertedResidual
83
+ input_channel = 32
84
+ last_channel = 1280
85
+ interverted_residual_setting = [
86
+ # t, c, n, s
87
+ [1, 16, 1, 1],
88
+ [6, 24, 2, 2],
89
+ [6, 32, 3, 2],
90
+ [6, 64, 4, 2],
91
+ [6, 96, 3, 1],
92
+ [6, 160, 3, 2],
93
+ [6, 320, 1, 1],
94
+ ]
95
+
96
+ # building first layer
97
+ assert input_size % 32 == 0
98
+ input_channel = int(input_channel * width_mult)
99
+ self.last_channel = int(last_channel * width_mult) if width_mult > 1.0 else last_channel
100
+ self.features = [conv_bn(3, input_channel, 2)]
101
+ # building inverted residual blocks
102
+ for t, c, n, s in interverted_residual_setting:
103
+ output_channel = int(c * width_mult)
104
+ for i in range(n):
105
+ if i == 0:
106
+ self.features.append(block(input_channel, output_channel, s, expand_ratio=t))
107
+ else:
108
+ self.features.append(block(input_channel, output_channel, 1, expand_ratio=t))
109
+ input_channel = output_channel
110
+ # building last several layers
111
+ self.features.append(conv_1x1_bn(input_channel, self.last_channel))
112
+ # make it nn.Sequential
113
+ self.features = nn.Sequential(*self.features)
114
+
115
+ # building classifier
116
+ self.classifier = nn.Sequential(
117
+ nn.Dropout(0.2),
118
+ nn.Linear(self.last_channel, n_class),
119
+ )
120
+
121
+ self._initialize_weights()
122
+
123
+ def forward(self, x):
124
+ x = self.features(x)
125
+ x = x.mean(3).mean(2)
126
+ x = self.classifier(x)
127
+ return x
128
+
129
+ def _initialize_weights(self):
130
+ for m in self.modules():
131
+ if isinstance(m, nn.Conv2d):
132
+ n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
133
+ m.weight.data.normal_(0, math.sqrt(2. / n))
134
+ if m.bias is not None:
135
+ m.bias.data.zero_()
136
+ elif isinstance(m, BatchNorm2d):
137
+ m.weight.data.fill_(1)
138
+ m.bias.data.zero_()
139
+ elif isinstance(m, nn.Linear):
140
+ n = m.weight.size(1)
141
+ m.weight.data.normal_(0, 0.01)
142
+ m.bias.data.zero_()
143
+
144
+
145
+ def mobilenetv2(pretrained=False, **kwargs):
146
+ """Constructs a MobileNet_V2 model.
147
+
148
+ Args:
149
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
150
+ """
151
+ model = MobileNetV2(n_class=1000, **kwargs)
152
+ if pretrained:
153
+ model.load_state_dict(load_url(model_urls['mobilenetv2']), strict=False)
154
+ return model
models/ade20k/object150_info.csv ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Idx,Ratio,Train,Val,Stuff,Name
2
+ 1,0.1576,11664,1172,1,wall
3
+ 2,0.1072,6046,612,1,building;edifice
4
+ 3,0.0878,8265,796,1,sky
5
+ 4,0.0621,9336,917,1,floor;flooring
6
+ 5,0.0480,6678,641,0,tree
7
+ 6,0.0450,6604,643,1,ceiling
8
+ 7,0.0398,4023,408,1,road;route
9
+ 8,0.0231,1906,199,0,bed
10
+ 9,0.0198,4688,460,0,windowpane;window
11
+ 10,0.0183,2423,225,1,grass
12
+ 11,0.0181,2874,294,0,cabinet
13
+ 12,0.0166,3068,310,1,sidewalk;pavement
14
+ 13,0.0160,5075,526,0,person;individual;someone;somebody;mortal;soul
15
+ 14,0.0151,1804,190,1,earth;ground
16
+ 15,0.0118,6666,796,0,door;double;door
17
+ 16,0.0110,4269,411,0,table
18
+ 17,0.0109,1691,160,1,mountain;mount
19
+ 18,0.0104,3999,441,0,plant;flora;plant;life
20
+ 19,0.0104,2149,217,0,curtain;drape;drapery;mantle;pall
21
+ 20,0.0103,3261,318,0,chair
22
+ 21,0.0098,3164,306,0,car;auto;automobile;machine;motorcar
23
+ 22,0.0074,709,75,1,water
24
+ 23,0.0067,3296,315,0,painting;picture
25
+ 24,0.0065,1191,106,0,sofa;couch;lounge
26
+ 25,0.0061,1516,162,0,shelf
27
+ 26,0.0060,667,69,1,house
28
+ 27,0.0053,651,57,1,sea
29
+ 28,0.0052,1847,224,0,mirror
30
+ 29,0.0046,1158,128,1,rug;carpet;carpeting
31
+ 30,0.0044,480,44,1,field
32
+ 31,0.0044,1172,98,0,armchair
33
+ 32,0.0044,1292,184,0,seat
34
+ 33,0.0033,1386,138,0,fence;fencing
35
+ 34,0.0031,698,61,0,desk
36
+ 35,0.0030,781,73,0,rock;stone
37
+ 36,0.0027,380,43,0,wardrobe;closet;press
38
+ 37,0.0026,3089,302,0,lamp
39
+ 38,0.0024,404,37,0,bathtub;bathing;tub;bath;tub
40
+ 39,0.0024,804,99,0,railing;rail
41
+ 40,0.0023,1453,153,0,cushion
42
+ 41,0.0023,411,37,0,base;pedestal;stand
43
+ 42,0.0022,1440,162,0,box
44
+ 43,0.0022,800,77,0,column;pillar
45
+ 44,0.0020,2650,298,0,signboard;sign
46
+ 45,0.0019,549,46,0,chest;of;drawers;chest;bureau;dresser
47
+ 46,0.0019,367,36,0,counter
48
+ 47,0.0018,311,30,1,sand
49
+ 48,0.0018,1181,122,0,sink
50
+ 49,0.0018,287,23,1,skyscraper
51
+ 50,0.0018,468,38,0,fireplace;hearth;open;fireplace
52
+ 51,0.0018,402,43,0,refrigerator;icebox
53
+ 52,0.0018,130,12,1,grandstand;covered;stand
54
+ 53,0.0018,561,64,1,path
55
+ 54,0.0017,880,102,0,stairs;steps
56
+ 55,0.0017,86,12,1,runway
57
+ 56,0.0017,172,11,0,case;display;case;showcase;vitrine
58
+ 57,0.0017,198,18,0,pool;table;billiard;table;snooker;table
59
+ 58,0.0017,930,109,0,pillow
60
+ 59,0.0015,139,18,0,screen;door;screen
61
+ 60,0.0015,564,52,1,stairway;staircase
62
+ 61,0.0015,320,26,1,river
63
+ 62,0.0015,261,29,1,bridge;span
64
+ 63,0.0014,275,22,0,bookcase
65
+ 64,0.0014,335,60,0,blind;screen
66
+ 65,0.0014,792,75,0,coffee;table;cocktail;table
67
+ 66,0.0014,395,49,0,toilet;can;commode;crapper;pot;potty;stool;throne
68
+ 67,0.0014,1309,138,0,flower
69
+ 68,0.0013,1112,113,0,book
70
+ 69,0.0013,266,27,1,hill
71
+ 70,0.0013,659,66,0,bench
72
+ 71,0.0012,331,31,0,countertop
73
+ 72,0.0012,531,56,0,stove;kitchen;stove;range;kitchen;range;cooking;stove
74
+ 73,0.0012,369,36,0,palm;palm;tree
75
+ 74,0.0012,144,9,0,kitchen;island
76
+ 75,0.0011,265,29,0,computer;computing;machine;computing;device;data;processor;electronic;computer;information;processing;system
77
+ 76,0.0010,324,33,0,swivel;chair
78
+ 77,0.0009,304,27,0,boat
79
+ 78,0.0009,170,20,0,bar
80
+ 79,0.0009,68,6,0,arcade;machine
81
+ 80,0.0009,65,8,1,hovel;hut;hutch;shack;shanty
82
+ 81,0.0009,248,25,0,bus;autobus;coach;charabanc;double-decker;jitney;motorbus;motorcoach;omnibus;passenger;vehicle
83
+ 82,0.0008,492,49,0,towel
84
+ 83,0.0008,2510,269,0,light;light;source
85
+ 84,0.0008,440,39,0,truck;motortruck
86
+ 85,0.0008,147,18,1,tower
87
+ 86,0.0008,583,56,0,chandelier;pendant;pendent
88
+ 87,0.0007,533,61,0,awning;sunshade;sunblind
89
+ 88,0.0007,1989,239,0,streetlight;street;lamp
90
+ 89,0.0007,71,5,0,booth;cubicle;stall;kiosk
91
+ 90,0.0007,618,53,0,television;television;receiver;television;set;tv;tv;set;idiot;box;boob;tube;telly;goggle;box
92
+ 91,0.0007,135,12,0,airplane;aeroplane;plane
93
+ 92,0.0007,83,5,1,dirt;track
94
+ 93,0.0007,178,17,0,apparel;wearing;apparel;dress;clothes
95
+ 94,0.0006,1003,104,0,pole
96
+ 95,0.0006,182,12,1,land;ground;soil
97
+ 96,0.0006,452,50,0,bannister;banister;balustrade;balusters;handrail
98
+ 97,0.0006,42,6,1,escalator;moving;staircase;moving;stairway
99
+ 98,0.0006,307,31,0,ottoman;pouf;pouffe;puff;hassock
100
+ 99,0.0006,965,114,0,bottle
101
+ 100,0.0006,117,13,0,buffet;counter;sideboard
102
+ 101,0.0006,354,35,0,poster;posting;placard;notice;bill;card
103
+ 102,0.0006,108,9,1,stage
104
+ 103,0.0006,557,55,0,van
105
+ 104,0.0006,52,4,0,ship
106
+ 105,0.0005,99,5,0,fountain
107
+ 106,0.0005,57,4,1,conveyer;belt;conveyor;belt;conveyer;conveyor;transporter
108
+ 107,0.0005,292,31,0,canopy
109
+ 108,0.0005,77,9,0,washer;automatic;washer;washing;machine
110
+ 109,0.0005,340,38,0,plaything;toy
111
+ 110,0.0005,66,3,1,swimming;pool;swimming;bath;natatorium
112
+ 111,0.0005,465,49,0,stool
113
+ 112,0.0005,50,4,0,barrel;cask
114
+ 113,0.0005,622,75,0,basket;handbasket
115
+ 114,0.0005,80,9,1,waterfall;falls
116
+ 115,0.0005,59,3,0,tent;collapsible;shelter
117
+ 116,0.0005,531,72,0,bag
118
+ 117,0.0005,282,30,0,minibike;motorbike
119
+ 118,0.0005,73,7,0,cradle
120
+ 119,0.0005,435,44,0,oven
121
+ 120,0.0005,136,25,0,ball
122
+ 121,0.0005,116,24,0,food;solid;food
123
+ 122,0.0004,266,31,0,step;stair
124
+ 123,0.0004,58,12,0,tank;storage;tank
125
+ 124,0.0004,418,83,0,trade;name;brand;name;brand;marque
126
+ 125,0.0004,319,43,0,microwave;microwave;oven
127
+ 126,0.0004,1193,139,0,pot;flowerpot
128
+ 127,0.0004,97,23,0,animal;animate;being;beast;brute;creature;fauna
129
+ 128,0.0004,347,36,0,bicycle;bike;wheel;cycle
130
+ 129,0.0004,52,5,1,lake
131
+ 130,0.0004,246,22,0,dishwasher;dish;washer;dishwashing;machine
132
+ 131,0.0004,108,13,0,screen;silver;screen;projection;screen
133
+ 132,0.0004,201,30,0,blanket;cover
134
+ 133,0.0004,285,21,0,sculpture
135
+ 134,0.0004,268,27,0,hood;exhaust;hood
136
+ 135,0.0003,1020,108,0,sconce
137
+ 136,0.0003,1282,122,0,vase
138
+ 137,0.0003,528,65,0,traffic;light;traffic;signal;stoplight
139
+ 138,0.0003,453,57,0,tray
140
+ 139,0.0003,671,100,0,ashcan;trash;can;garbage;can;wastebin;ash;bin;ash-bin;ashbin;dustbin;trash;barrel;trash;bin
141
+ 140,0.0003,397,44,0,fan
142
+ 141,0.0003,92,8,1,pier;wharf;wharfage;dock
143
+ 142,0.0003,228,18,0,crt;screen
144
+ 143,0.0003,570,59,0,plate
145
+ 144,0.0003,217,22,0,monitor;monitoring;device
146
+ 145,0.0003,206,19,0,bulletin;board;notice;board
147
+ 146,0.0003,130,14,0,shower
148
+ 147,0.0003,178,28,0,radiator
149
+ 148,0.0002,504,57,0,glass;drinking;glass
150
+ 149,0.0002,775,96,0,clock
151
+ 150,0.0002,421,56,0,flag
models/ade20k/resnet.py ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Modified from https://github.com/CSAILVision/semantic-segmentation-pytorch"""
2
+
3
+ import math
4
+
5
+ import torch.nn as nn
6
+ from torch.nn import BatchNorm2d
7
+
8
+ from .utils import load_url
9
+
10
+ __all__ = ['ResNet', 'resnet50']
11
+
12
+
13
+ model_urls = {
14
+ 'resnet50': 'http://sceneparsing.csail.mit.edu/model/pretrained_resnet/resnet50-imagenet.pth',
15
+ }
16
+
17
+
18
+ def conv3x3(in_planes, out_planes, stride=1):
19
+ "3x3 convolution with padding"
20
+ return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
21
+ padding=1, bias=False)
22
+
23
+
24
+ class BasicBlock(nn.Module):
25
+ expansion = 1
26
+
27
+ def __init__(self, inplanes, planes, stride=1, downsample=None):
28
+ super(BasicBlock, self).__init__()
29
+ self.conv1 = conv3x3(inplanes, planes, stride)
30
+ self.bn1 = BatchNorm2d(planes)
31
+ self.relu = nn.ReLU(inplace=True)
32
+ self.conv2 = conv3x3(planes, planes)
33
+ self.bn2 = BatchNorm2d(planes)
34
+ self.downsample = downsample
35
+ self.stride = stride
36
+
37
+ def forward(self, x):
38
+ residual = x
39
+
40
+ out = self.conv1(x)
41
+ out = self.bn1(out)
42
+ out = self.relu(out)
43
+
44
+ out = self.conv2(out)
45
+ out = self.bn2(out)
46
+
47
+ if self.downsample is not None:
48
+ residual = self.downsample(x)
49
+
50
+ out += residual
51
+ out = self.relu(out)
52
+
53
+ return out
54
+
55
+
56
+ class Bottleneck(nn.Module):
57
+ expansion = 4
58
+
59
+ def __init__(self, inplanes, planes, stride=1, downsample=None):
60
+ super(Bottleneck, self).__init__()
61
+ self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
62
+ self.bn1 = BatchNorm2d(planes)
63
+ self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
64
+ padding=1, bias=False)
65
+ self.bn2 = BatchNorm2d(planes)
66
+ self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
67
+ self.bn3 = BatchNorm2d(planes * 4)
68
+ self.relu = nn.ReLU(inplace=True)
69
+ self.downsample = downsample
70
+ self.stride = stride
71
+
72
+ def forward(self, x):
73
+ residual = x
74
+
75
+ out = self.conv1(x)
76
+ out = self.bn1(out)
77
+ out = self.relu(out)
78
+
79
+ out = self.conv2(out)
80
+ out = self.bn2(out)
81
+ out = self.relu(out)
82
+
83
+ out = self.conv3(out)
84
+ out = self.bn3(out)
85
+
86
+ if self.downsample is not None:
87
+ residual = self.downsample(x)
88
+
89
+ out += residual
90
+ out = self.relu(out)
91
+
92
+ return out
93
+
94
+
95
+ class ResNet(nn.Module):
96
+
97
+ def __init__(self, block, layers, num_classes=1000):
98
+ self.inplanes = 128
99
+ super(ResNet, self).__init__()
100
+ self.conv1 = conv3x3(3, 64, stride=2)
101
+ self.bn1 = BatchNorm2d(64)
102
+ self.relu1 = nn.ReLU(inplace=True)
103
+ self.conv2 = conv3x3(64, 64)
104
+ self.bn2 = BatchNorm2d(64)
105
+ self.relu2 = nn.ReLU(inplace=True)
106
+ self.conv3 = conv3x3(64, 128)
107
+ self.bn3 = BatchNorm2d(128)
108
+ self.relu3 = nn.ReLU(inplace=True)
109
+ self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
110
+
111
+ self.layer1 = self._make_layer(block, 64, layers[0])
112
+ self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
113
+ self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
114
+ self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
115
+ self.avgpool = nn.AvgPool2d(7, stride=1)
116
+ self.fc = nn.Linear(512 * block.expansion, num_classes)
117
+
118
+ for m in self.modules():
119
+ if isinstance(m, nn.Conv2d):
120
+ n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
121
+ m.weight.data.normal_(0, math.sqrt(2. / n))
122
+ elif isinstance(m, BatchNorm2d):
123
+ m.weight.data.fill_(1)
124
+ m.bias.data.zero_()
125
+
126
+ def _make_layer(self, block, planes, blocks, stride=1):
127
+ downsample = None
128
+ if stride != 1 or self.inplanes != planes * block.expansion:
129
+ downsample = nn.Sequential(
130
+ nn.Conv2d(self.inplanes, planes * block.expansion,
131
+ kernel_size=1, stride=stride, bias=False),
132
+ BatchNorm2d(planes * block.expansion),
133
+ )
134
+
135
+ layers = []
136
+ layers.append(block(self.inplanes, planes, stride, downsample))
137
+ self.inplanes = planes * block.expansion
138
+ for i in range(1, blocks):
139
+ layers.append(block(self.inplanes, planes))
140
+
141
+ return nn.Sequential(*layers)
142
+
143
+ def forward(self, x):
144
+ x = self.relu1(self.bn1(self.conv1(x)))
145
+ x = self.relu2(self.bn2(self.conv2(x)))
146
+ x = self.relu3(self.bn3(self.conv3(x)))
147
+ x = self.maxpool(x)
148
+
149
+ x = self.layer1(x)
150
+ x = self.layer2(x)
151
+ x = self.layer3(x)
152
+ x = self.layer4(x)
153
+
154
+ x = self.avgpool(x)
155
+ x = x.view(x.size(0), -1)
156
+ x = self.fc(x)
157
+
158
+ return x
159
+
160
+
161
+ def resnet50(pretrained=False, **kwargs):
162
+ """Constructs a ResNet-50 model.
163
+
164
+ Args:
165
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
166
+ """
167
+ model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
168
+ if pretrained:
169
+ model.load_state_dict(load_url(model_urls['resnet50']), strict=False)
170
+ return model
171
+
172
+
173
+ def resnet18(pretrained=False, **kwargs):
174
+ """Constructs a ResNet-18 model.
175
+ Args:
176
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
177
+ """
178
+ model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
179
+ if pretrained:
180
+ model.load_state_dict(load_url(model_urls['resnet18']))
181
+ return model
models/ade20k/segm_lib/.DS_Store ADDED
Binary file (6.15 kB). View file
 
models/ade20k/segm_lib/nn/.DS_Store ADDED
Binary file (6.15 kB). View file
 
models/ade20k/segm_lib/nn/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ from .modules import *
2
+ from .parallel import UserScatteredDataParallel, user_scattered_collate, async_copy_to
models/ade20k/segm_lib/nn/modules/__init__.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ # File : __init__.py
3
+ # Author : Jiayuan Mao
4
+ # Email : [email protected]
5
+ # Date : 27/01/2018
6
+ #
7
+ # This file is part of Synchronized-BatchNorm-PyTorch.
8
+ # https://github.com/vacancy/Synchronized-BatchNorm-PyTorch
9
+ # Distributed under MIT License.
10
+
11
+ from .batchnorm import SynchronizedBatchNorm1d, SynchronizedBatchNorm2d, SynchronizedBatchNorm3d
12
+ from .replicate import DataParallelWithCallback, patch_replication_callback
models/ade20k/segm_lib/nn/modules/batchnorm.py ADDED
@@ -0,0 +1,329 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ # File : batchnorm.py
3
+ # Author : Jiayuan Mao
4
+ # Email : [email protected]
5
+ # Date : 27/01/2018
6
+ #
7
+ # This file is part of Synchronized-BatchNorm-PyTorch.
8
+ # https://github.com/vacancy/Synchronized-BatchNorm-PyTorch
9
+ # Distributed under MIT License.
10
+
11
+ import collections
12
+
13
+ import torch
14
+ import torch.nn.functional as F
15
+
16
+ from torch.nn.modules.batchnorm import _BatchNorm
17
+ from torch.nn.parallel._functions import ReduceAddCoalesced, Broadcast
18
+
19
+ from .comm import SyncMaster
20
+
21
+ __all__ = ['SynchronizedBatchNorm1d', 'SynchronizedBatchNorm2d', 'SynchronizedBatchNorm3d']
22
+
23
+
24
+ def _sum_ft(tensor):
25
+ """sum over the first and last dimention"""
26
+ return tensor.sum(dim=0).sum(dim=-1)
27
+
28
+
29
+ def _unsqueeze_ft(tensor):
30
+ """add new dementions at the front and the tail"""
31
+ return tensor.unsqueeze(0).unsqueeze(-1)
32
+
33
+
34
+ _ChildMessage = collections.namedtuple('_ChildMessage', ['sum', 'ssum', 'sum_size'])
35
+ _MasterMessage = collections.namedtuple('_MasterMessage', ['sum', 'inv_std'])
36
+
37
+
38
+ class _SynchronizedBatchNorm(_BatchNorm):
39
+ def __init__(self, num_features, eps=1e-5, momentum=0.001, affine=True):
40
+ super(_SynchronizedBatchNorm, self).__init__(num_features, eps=eps, momentum=momentum, affine=affine)
41
+
42
+ self._sync_master = SyncMaster(self._data_parallel_master)
43
+
44
+ self._is_parallel = False
45
+ self._parallel_id = None
46
+ self._slave_pipe = None
47
+
48
+ # customed batch norm statistics
49
+ self._moving_average_fraction = 1. - momentum
50
+ self.register_buffer('_tmp_running_mean', torch.zeros(self.num_features))
51
+ self.register_buffer('_tmp_running_var', torch.ones(self.num_features))
52
+ self.register_buffer('_running_iter', torch.ones(1))
53
+ self._tmp_running_mean = self.running_mean.clone() * self._running_iter
54
+ self._tmp_running_var = self.running_var.clone() * self._running_iter
55
+
56
+ def forward(self, input):
57
+ # If it is not parallel computation or is in evaluation mode, use PyTorch's implementation.
58
+ if not (self._is_parallel and self.training):
59
+ return F.batch_norm(
60
+ input, self.running_mean, self.running_var, self.weight, self.bias,
61
+ self.training, self.momentum, self.eps)
62
+
63
+ # Resize the input to (B, C, -1).
64
+ input_shape = input.size()
65
+ input = input.view(input.size(0), self.num_features, -1)
66
+
67
+ # Compute the sum and square-sum.
68
+ sum_size = input.size(0) * input.size(2)
69
+ input_sum = _sum_ft(input)
70
+ input_ssum = _sum_ft(input ** 2)
71
+
72
+ # Reduce-and-broadcast the statistics.
73
+ if self._parallel_id == 0:
74
+ mean, inv_std = self._sync_master.run_master(_ChildMessage(input_sum, input_ssum, sum_size))
75
+ else:
76
+ mean, inv_std = self._slave_pipe.run_slave(_ChildMessage(input_sum, input_ssum, sum_size))
77
+
78
+ # Compute the output.
79
+ if self.affine:
80
+ # MJY:: Fuse the multiplication for speed.
81
+ output = (input - _unsqueeze_ft(mean)) * _unsqueeze_ft(inv_std * self.weight) + _unsqueeze_ft(self.bias)
82
+ else:
83
+ output = (input - _unsqueeze_ft(mean)) * _unsqueeze_ft(inv_std)
84
+
85
+ # Reshape it.
86
+ return output.view(input_shape)
87
+
88
+ def __data_parallel_replicate__(self, ctx, copy_id):
89
+ self._is_parallel = True
90
+ self._parallel_id = copy_id
91
+
92
+ # parallel_id == 0 means master device.
93
+ if self._parallel_id == 0:
94
+ ctx.sync_master = self._sync_master
95
+ else:
96
+ self._slave_pipe = ctx.sync_master.register_slave(copy_id)
97
+
98
+ def _data_parallel_master(self, intermediates):
99
+ """Reduce the sum and square-sum, compute the statistics, and broadcast it."""
100
+ intermediates = sorted(intermediates, key=lambda i: i[1].sum.get_device())
101
+
102
+ to_reduce = [i[1][:2] for i in intermediates]
103
+ to_reduce = [j for i in to_reduce for j in i] # flatten
104
+ target_gpus = [i[1].sum.get_device() for i in intermediates]
105
+
106
+ sum_size = sum([i[1].sum_size for i in intermediates])
107
+ sum_, ssum = ReduceAddCoalesced.apply(target_gpus[0], 2, *to_reduce)
108
+
109
+ mean, inv_std = self._compute_mean_std(sum_, ssum, sum_size)
110
+
111
+ broadcasted = Broadcast.apply(target_gpus, mean, inv_std)
112
+
113
+ outputs = []
114
+ for i, rec in enumerate(intermediates):
115
+ outputs.append((rec[0], _MasterMessage(*broadcasted[i*2:i*2+2])))
116
+
117
+ return outputs
118
+
119
+ def _add_weighted(self, dest, delta, alpha=1, beta=1, bias=0):
120
+ """return *dest* by `dest := dest*alpha + delta*beta + bias`"""
121
+ return dest * alpha + delta * beta + bias
122
+
123
+ def _compute_mean_std(self, sum_, ssum, size):
124
+ """Compute the mean and standard-deviation with sum and square-sum. This method
125
+ also maintains the moving average on the master device."""
126
+ assert size > 1, 'BatchNorm computes unbiased standard-deviation, which requires size > 1.'
127
+ mean = sum_ / size
128
+ sumvar = ssum - sum_ * mean
129
+ unbias_var = sumvar / (size - 1)
130
+ bias_var = sumvar / size
131
+
132
+ self._tmp_running_mean = self._add_weighted(self._tmp_running_mean, mean.data, alpha=self._moving_average_fraction)
133
+ self._tmp_running_var = self._add_weighted(self._tmp_running_var, unbias_var.data, alpha=self._moving_average_fraction)
134
+ self._running_iter = self._add_weighted(self._running_iter, 1, alpha=self._moving_average_fraction)
135
+
136
+ self.running_mean = self._tmp_running_mean / self._running_iter
137
+ self.running_var = self._tmp_running_var / self._running_iter
138
+
139
+ return mean, bias_var.clamp(self.eps) ** -0.5
140
+
141
+
142
+ class SynchronizedBatchNorm1d(_SynchronizedBatchNorm):
143
+ r"""Applies Synchronized Batch Normalization over a 2d or 3d input that is seen as a
144
+ mini-batch.
145
+
146
+ .. math::
147
+
148
+ y = \frac{x - mean[x]}{ \sqrt{Var[x] + \epsilon}} * gamma + beta
149
+
150
+ This module differs from the built-in PyTorch BatchNorm1d as the mean and
151
+ standard-deviation are reduced across all devices during training.
152
+
153
+ For example, when one uses `nn.DataParallel` to wrap the network during
154
+ training, PyTorch's implementation normalize the tensor on each device using
155
+ the statistics only on that device, which accelerated the computation and
156
+ is also easy to implement, but the statistics might be inaccurate.
157
+ Instead, in this synchronized version, the statistics will be computed
158
+ over all training samples distributed on multiple devices.
159
+
160
+ Note that, for one-GPU or CPU-only case, this module behaves exactly same
161
+ as the built-in PyTorch implementation.
162
+
163
+ The mean and standard-deviation are calculated per-dimension over
164
+ the mini-batches and gamma and beta are learnable parameter vectors
165
+ of size C (where C is the input size).
166
+
167
+ During training, this layer keeps a running estimate of its computed mean
168
+ and variance. The running sum is kept with a default momentum of 0.1.
169
+
170
+ During evaluation, this running mean/variance is used for normalization.
171
+
172
+ Because the BatchNorm is done over the `C` dimension, computing statistics
173
+ on `(N, L)` slices, it's common terminology to call this Temporal BatchNorm
174
+
175
+ Args:
176
+ num_features: num_features from an expected input of size
177
+ `batch_size x num_features [x width]`
178
+ eps: a value added to the denominator for numerical stability.
179
+ Default: 1e-5
180
+ momentum: the value used for the running_mean and running_var
181
+ computation. Default: 0.1
182
+ affine: a boolean value that when set to ``True``, gives the layer learnable
183
+ affine parameters. Default: ``True``
184
+
185
+ Shape:
186
+ - Input: :math:`(N, C)` or :math:`(N, C, L)`
187
+ - Output: :math:`(N, C)` or :math:`(N, C, L)` (same shape as input)
188
+
189
+ Examples:
190
+ >>> # With Learnable Parameters
191
+ >>> m = SynchronizedBatchNorm1d(100)
192
+ >>> # Without Learnable Parameters
193
+ >>> m = SynchronizedBatchNorm1d(100, affine=False)
194
+ >>> input = torch.autograd.Variable(torch.randn(20, 100))
195
+ >>> output = m(input)
196
+ """
197
+
198
+ def _check_input_dim(self, input):
199
+ if input.dim() != 2 and input.dim() != 3:
200
+ raise ValueError('expected 2D or 3D input (got {}D input)'
201
+ .format(input.dim()))
202
+ super(SynchronizedBatchNorm1d, self)._check_input_dim(input)
203
+
204
+
205
+ class SynchronizedBatchNorm2d(_SynchronizedBatchNorm):
206
+ r"""Applies Batch Normalization over a 4d input that is seen as a mini-batch
207
+ of 3d inputs
208
+
209
+ .. math::
210
+
211
+ y = \frac{x - mean[x]}{ \sqrt{Var[x] + \epsilon}} * gamma + beta
212
+
213
+ This module differs from the built-in PyTorch BatchNorm2d as the mean and
214
+ standard-deviation are reduced across all devices during training.
215
+
216
+ For example, when one uses `nn.DataParallel` to wrap the network during
217
+ training, PyTorch's implementation normalize the tensor on each device using
218
+ the statistics only on that device, which accelerated the computation and
219
+ is also easy to implement, but the statistics might be inaccurate.
220
+ Instead, in this synchronized version, the statistics will be computed
221
+ over all training samples distributed on multiple devices.
222
+
223
+ Note that, for one-GPU or CPU-only case, this module behaves exactly same
224
+ as the built-in PyTorch implementation.
225
+
226
+ The mean and standard-deviation are calculated per-dimension over
227
+ the mini-batches and gamma and beta are learnable parameter vectors
228
+ of size C (where C is the input size).
229
+
230
+ During training, this layer keeps a running estimate of its computed mean
231
+ and variance. The running sum is kept with a default momentum of 0.1.
232
+
233
+ During evaluation, this running mean/variance is used for normalization.
234
+
235
+ Because the BatchNorm is done over the `C` dimension, computing statistics
236
+ on `(N, H, W)` slices, it's common terminology to call this Spatial BatchNorm
237
+
238
+ Args:
239
+ num_features: num_features from an expected input of
240
+ size batch_size x num_features x height x width
241
+ eps: a value added to the denominator for numerical stability.
242
+ Default: 1e-5
243
+ momentum: the value used for the running_mean and running_var
244
+ computation. Default: 0.1
245
+ affine: a boolean value that when set to ``True``, gives the layer learnable
246
+ affine parameters. Default: ``True``
247
+
248
+ Shape:
249
+ - Input: :math:`(N, C, H, W)`
250
+ - Output: :math:`(N, C, H, W)` (same shape as input)
251
+
252
+ Examples:
253
+ >>> # With Learnable Parameters
254
+ >>> m = SynchronizedBatchNorm2d(100)
255
+ >>> # Without Learnable Parameters
256
+ >>> m = SynchronizedBatchNorm2d(100, affine=False)
257
+ >>> input = torch.autograd.Variable(torch.randn(20, 100, 35, 45))
258
+ >>> output = m(input)
259
+ """
260
+
261
+ def _check_input_dim(self, input):
262
+ if input.dim() != 4:
263
+ raise ValueError('expected 4D input (got {}D input)'
264
+ .format(input.dim()))
265
+ super(SynchronizedBatchNorm2d, self)._check_input_dim(input)
266
+
267
+
268
+ class SynchronizedBatchNorm3d(_SynchronizedBatchNorm):
269
+ r"""Applies Batch Normalization over a 5d input that is seen as a mini-batch
270
+ of 4d inputs
271
+
272
+ .. math::
273
+
274
+ y = \frac{x - mean[x]}{ \sqrt{Var[x] + \epsilon}} * gamma + beta
275
+
276
+ This module differs from the built-in PyTorch BatchNorm3d as the mean and
277
+ standard-deviation are reduced across all devices during training.
278
+
279
+ For example, when one uses `nn.DataParallel` to wrap the network during
280
+ training, PyTorch's implementation normalize the tensor on each device using
281
+ the statistics only on that device, which accelerated the computation and
282
+ is also easy to implement, but the statistics might be inaccurate.
283
+ Instead, in this synchronized version, the statistics will be computed
284
+ over all training samples distributed on multiple devices.
285
+
286
+ Note that, for one-GPU or CPU-only case, this module behaves exactly same
287
+ as the built-in PyTorch implementation.
288
+
289
+ The mean and standard-deviation are calculated per-dimension over
290
+ the mini-batches and gamma and beta are learnable parameter vectors
291
+ of size C (where C is the input size).
292
+
293
+ During training, this layer keeps a running estimate of its computed mean
294
+ and variance. The running sum is kept with a default momentum of 0.1.
295
+
296
+ During evaluation, this running mean/variance is used for normalization.
297
+
298
+ Because the BatchNorm is done over the `C` dimension, computing statistics
299
+ on `(N, D, H, W)` slices, it's common terminology to call this Volumetric BatchNorm
300
+ or Spatio-temporal BatchNorm
301
+
302
+ Args:
303
+ num_features: num_features from an expected input of
304
+ size batch_size x num_features x depth x height x width
305
+ eps: a value added to the denominator for numerical stability.
306
+ Default: 1e-5
307
+ momentum: the value used for the running_mean and running_var
308
+ computation. Default: 0.1
309
+ affine: a boolean value that when set to ``True``, gives the layer learnable
310
+ affine parameters. Default: ``True``
311
+
312
+ Shape:
313
+ - Input: :math:`(N, C, D, H, W)`
314
+ - Output: :math:`(N, C, D, H, W)` (same shape as input)
315
+
316
+ Examples:
317
+ >>> # With Learnable Parameters
318
+ >>> m = SynchronizedBatchNorm3d(100)
319
+ >>> # Without Learnable Parameters
320
+ >>> m = SynchronizedBatchNorm3d(100, affine=False)
321
+ >>> input = torch.autograd.Variable(torch.randn(20, 100, 35, 45, 10))
322
+ >>> output = m(input)
323
+ """
324
+
325
+ def _check_input_dim(self, input):
326
+ if input.dim() != 5:
327
+ raise ValueError('expected 5D input (got {}D input)'
328
+ .format(input.dim()))
329
+ super(SynchronizedBatchNorm3d, self)._check_input_dim(input)
models/ade20k/segm_lib/nn/modules/comm.py ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ # File : comm.py
3
+ # Author : Jiayuan Mao
4
+ # Email : [email protected]
5
+ # Date : 27/01/2018
6
+ #
7
+ # This file is part of Synchronized-BatchNorm-PyTorch.
8
+ # https://github.com/vacancy/Synchronized-BatchNorm-PyTorch
9
+ # Distributed under MIT License.
10
+
11
+ import queue
12
+ import collections
13
+ import threading
14
+
15
+ __all__ = ['FutureResult', 'SlavePipe', 'SyncMaster']
16
+
17
+
18
+ class FutureResult(object):
19
+ """A thread-safe future implementation. Used only as one-to-one pipe."""
20
+
21
+ def __init__(self):
22
+ self._result = None
23
+ self._lock = threading.Lock()
24
+ self._cond = threading.Condition(self._lock)
25
+
26
+ def put(self, result):
27
+ with self._lock:
28
+ assert self._result is None, 'Previous result has\'t been fetched.'
29
+ self._result = result
30
+ self._cond.notify()
31
+
32
+ def get(self):
33
+ with self._lock:
34
+ if self._result is None:
35
+ self._cond.wait()
36
+
37
+ res = self._result
38
+ self._result = None
39
+ return res
40
+
41
+
42
+ _MasterRegistry = collections.namedtuple('MasterRegistry', ['result'])
43
+ _SlavePipeBase = collections.namedtuple('_SlavePipeBase', ['identifier', 'queue', 'result'])
44
+
45
+
46
+ class SlavePipe(_SlavePipeBase):
47
+ """Pipe for master-slave communication."""
48
+
49
+ def run_slave(self, msg):
50
+ self.queue.put((self.identifier, msg))
51
+ ret = self.result.get()
52
+ self.queue.put(True)
53
+ return ret
54
+
55
+
56
+ class SyncMaster(object):
57
+ """An abstract `SyncMaster` object.
58
+
59
+ - During the replication, as the data parallel will trigger an callback of each module, all slave devices should
60
+ call `register(id)` and obtain an `SlavePipe` to communicate with the master.
61
+ - During the forward pass, master device invokes `run_master`, all messages from slave devices will be collected,
62
+ and passed to a registered callback.
63
+ - After receiving the messages, the master device should gather the information and determine to message passed
64
+ back to each slave devices.
65
+ """
66
+
67
+ def __init__(self, master_callback):
68
+ """
69
+
70
+ Args:
71
+ master_callback: a callback to be invoked after having collected messages from slave devices.
72
+ """
73
+ self._master_callback = master_callback
74
+ self._queue = queue.Queue()
75
+ self._registry = collections.OrderedDict()
76
+ self._activated = False
77
+
78
+ def register_slave(self, identifier):
79
+ """
80
+ Register an slave device.
81
+
82
+ Args:
83
+ identifier: an identifier, usually is the device id.
84
+
85
+ Returns: a `SlavePipe` object which can be used to communicate with the master device.
86
+
87
+ """
88
+ if self._activated:
89
+ assert self._queue.empty(), 'Queue is not clean before next initialization.'
90
+ self._activated = False
91
+ self._registry.clear()
92
+ future = FutureResult()
93
+ self._registry[identifier] = _MasterRegistry(future)
94
+ return SlavePipe(identifier, self._queue, future)
95
+
96
+ def run_master(self, master_msg):
97
+ """
98
+ Main entry for the master device in each forward pass.
99
+ The messages were first collected from each devices (including the master device), and then
100
+ an callback will be invoked to compute the message to be sent back to each devices
101
+ (including the master device).
102
+
103
+ Args:
104
+ master_msg: the message that the master want to send to itself. This will be placed as the first
105
+ message when calling `master_callback`. For detailed usage, see `_SynchronizedBatchNorm` for an example.
106
+
107
+ Returns: the message to be sent back to the master device.
108
+
109
+ """
110
+ self._activated = True
111
+
112
+ intermediates = [(0, master_msg)]
113
+ for i in range(self.nr_slaves):
114
+ intermediates.append(self._queue.get())
115
+
116
+ results = self._master_callback(intermediates)
117
+ assert results[0][0] == 0, 'The first result should belongs to the master.'
118
+
119
+ for i, res in results:
120
+ if i == 0:
121
+ continue
122
+ self._registry[i].result.put(res)
123
+
124
+ for i in range(self.nr_slaves):
125
+ assert self._queue.get() is True
126
+
127
+ return results[0][1]
128
+
129
+ @property
130
+ def nr_slaves(self):
131
+ return len(self._registry)
models/ade20k/segm_lib/nn/modules/replicate.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ # File : replicate.py
3
+ # Author : Jiayuan Mao
4
+ # Email : [email protected]
5
+ # Date : 27/01/2018
6
+ #
7
+ # This file is part of Synchronized-BatchNorm-PyTorch.
8
+ # https://github.com/vacancy/Synchronized-BatchNorm-PyTorch
9
+ # Distributed under MIT License.
10
+
11
+ import functools
12
+
13
+ from torch.nn.parallel.data_parallel import DataParallel
14
+
15
+ __all__ = [
16
+ 'CallbackContext',
17
+ 'execute_replication_callbacks',
18
+ 'DataParallelWithCallback',
19
+ 'patch_replication_callback'
20
+ ]
21
+
22
+
23
+ class CallbackContext(object):
24
+ pass
25
+
26
+
27
+ def execute_replication_callbacks(modules):
28
+ """
29
+ Execute an replication callback `__data_parallel_replicate__` on each module created by original replication.
30
+
31
+ The callback will be invoked with arguments `__data_parallel_replicate__(ctx, copy_id)`
32
+
33
+ Note that, as all modules are isomorphism, we assign each sub-module with a context
34
+ (shared among multiple copies of this module on different devices).
35
+ Through this context, different copies can share some information.
36
+
37
+ We guarantee that the callback on the master copy (the first copy) will be called ahead of calling the callback
38
+ of any slave copies.
39
+ """
40
+ master_copy = modules[0]
41
+ nr_modules = len(list(master_copy.modules()))
42
+ ctxs = [CallbackContext() for _ in range(nr_modules)]
43
+
44
+ for i, module in enumerate(modules):
45
+ for j, m in enumerate(module.modules()):
46
+ if hasattr(m, '__data_parallel_replicate__'):
47
+ m.__data_parallel_replicate__(ctxs[j], i)
48
+
49
+
50
+ class DataParallelWithCallback(DataParallel):
51
+ """
52
+ Data Parallel with a replication callback.
53
+
54
+ An replication callback `__data_parallel_replicate__` of each module will be invoked after being created by
55
+ original `replicate` function.
56
+ The callback will be invoked with arguments `__data_parallel_replicate__(ctx, copy_id)`
57
+
58
+ Examples:
59
+ > sync_bn = SynchronizedBatchNorm1d(10, eps=1e-5, affine=False)
60
+ > sync_bn = DataParallelWithCallback(sync_bn, device_ids=[0, 1])
61
+ # sync_bn.__data_parallel_replicate__ will be invoked.
62
+ """
63
+
64
+ def replicate(self, module, device_ids):
65
+ modules = super(DataParallelWithCallback, self).replicate(module, device_ids)
66
+ execute_replication_callbacks(modules)
67
+ return modules
68
+
69
+
70
+ def patch_replication_callback(data_parallel):
71
+ """
72
+ Monkey-patch an existing `DataParallel` object. Add the replication callback.
73
+ Useful when you have customized `DataParallel` implementation.
74
+
75
+ Examples:
76
+ > sync_bn = SynchronizedBatchNorm1d(10, eps=1e-5, affine=False)
77
+ > sync_bn = DataParallel(sync_bn, device_ids=[0, 1])
78
+ > patch_replication_callback(sync_bn)
79
+ # this is equivalent to
80
+ > sync_bn = SynchronizedBatchNorm1d(10, eps=1e-5, affine=False)
81
+ > sync_bn = DataParallelWithCallback(sync_bn, device_ids=[0, 1])
82
+ """
83
+
84
+ assert isinstance(data_parallel, DataParallel)
85
+
86
+ old_replicate = data_parallel.replicate
87
+
88
+ @functools.wraps(old_replicate)
89
+ def new_replicate(module, device_ids):
90
+ modules = old_replicate(module, device_ids)
91
+ execute_replication_callbacks(modules)
92
+ return modules
93
+
94
+ data_parallel.replicate = new_replicate
models/ade20k/segm_lib/nn/modules/tests/test_numeric_batchnorm.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ # File : test_numeric_batchnorm.py
3
+ # Author : Jiayuan Mao
4
+ # Email : [email protected]
5
+ # Date : 27/01/2018
6
+ #
7
+ # This file is part of Synchronized-BatchNorm-PyTorch.
8
+
9
+ import unittest
10
+
11
+ import torch
12
+ import torch.nn as nn
13
+ from torch.autograd import Variable
14
+
15
+ from sync_batchnorm.unittest import TorchTestCase
16
+
17
+
18
+ def handy_var(a, unbias=True):
19
+ n = a.size(0)
20
+ asum = a.sum(dim=0)
21
+ as_sum = (a ** 2).sum(dim=0) # a square sum
22
+ sumvar = as_sum - asum * asum / n
23
+ if unbias:
24
+ return sumvar / (n - 1)
25
+ else:
26
+ return sumvar / n
27
+
28
+
29
+ class NumericTestCase(TorchTestCase):
30
+ def testNumericBatchNorm(self):
31
+ a = torch.rand(16, 10)
32
+ bn = nn.BatchNorm2d(10, momentum=1, eps=1e-5, affine=False)
33
+ bn.train()
34
+
35
+ a_var1 = Variable(a, requires_grad=True)
36
+ b_var1 = bn(a_var1)
37
+ loss1 = b_var1.sum()
38
+ loss1.backward()
39
+
40
+ a_var2 = Variable(a, requires_grad=True)
41
+ a_mean2 = a_var2.mean(dim=0, keepdim=True)
42
+ a_std2 = torch.sqrt(handy_var(a_var2, unbias=False).clamp(min=1e-5))
43
+ # a_std2 = torch.sqrt(a_var2.var(dim=0, keepdim=True, unbiased=False) + 1e-5)
44
+ b_var2 = (a_var2 - a_mean2) / a_std2
45
+ loss2 = b_var2.sum()
46
+ loss2.backward()
47
+
48
+ self.assertTensorClose(bn.running_mean, a.mean(dim=0))
49
+ self.assertTensorClose(bn.running_var, handy_var(a))
50
+ self.assertTensorClose(a_var1.data, a_var2.data)
51
+ self.assertTensorClose(b_var1.data, b_var2.data)
52
+ self.assertTensorClose(a_var1.grad, a_var2.grad)
53
+
54
+
55
+ if __name__ == '__main__':
56
+ unittest.main()
models/ade20k/segm_lib/nn/modules/tests/test_sync_batchnorm.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ # File : test_sync_batchnorm.py
3
+ # Author : Jiayuan Mao
4
+ # Email : [email protected]
5
+ # Date : 27/01/2018
6
+ #
7
+ # This file is part of Synchronized-BatchNorm-PyTorch.
8
+
9
+ import unittest
10
+
11
+ import torch
12
+ import torch.nn as nn
13
+ from torch.autograd import Variable
14
+
15
+ from sync_batchnorm import SynchronizedBatchNorm1d, SynchronizedBatchNorm2d, DataParallelWithCallback
16
+ from sync_batchnorm.unittest import TorchTestCase
17
+
18
+
19
+ def handy_var(a, unbias=True):
20
+ n = a.size(0)
21
+ asum = a.sum(dim=0)
22
+ as_sum = (a ** 2).sum(dim=0) # a square sum
23
+ sumvar = as_sum - asum * asum / n
24
+ if unbias:
25
+ return sumvar / (n - 1)
26
+ else:
27
+ return sumvar / n
28
+
29
+
30
+ def _find_bn(module):
31
+ for m in module.modules():
32
+ if isinstance(m, (nn.BatchNorm1d, nn.BatchNorm2d, SynchronizedBatchNorm1d, SynchronizedBatchNorm2d)):
33
+ return m
34
+
35
+
36
+ class SyncTestCase(TorchTestCase):
37
+ def _syncParameters(self, bn1, bn2):
38
+ bn1.reset_parameters()
39
+ bn2.reset_parameters()
40
+ if bn1.affine and bn2.affine:
41
+ bn2.weight.data.copy_(bn1.weight.data)
42
+ bn2.bias.data.copy_(bn1.bias.data)
43
+
44
+ def _checkBatchNormResult(self, bn1, bn2, input, is_train, cuda=False):
45
+ """Check the forward and backward for the customized batch normalization."""
46
+ bn1.train(mode=is_train)
47
+ bn2.train(mode=is_train)
48
+
49
+ if cuda:
50
+ input = input.cuda()
51
+
52
+ self._syncParameters(_find_bn(bn1), _find_bn(bn2))
53
+
54
+ input1 = Variable(input, requires_grad=True)
55
+ output1 = bn1(input1)
56
+ output1.sum().backward()
57
+ input2 = Variable(input, requires_grad=True)
58
+ output2 = bn2(input2)
59
+ output2.sum().backward()
60
+
61
+ self.assertTensorClose(input1.data, input2.data)
62
+ self.assertTensorClose(output1.data, output2.data)
63
+ self.assertTensorClose(input1.grad, input2.grad)
64
+ self.assertTensorClose(_find_bn(bn1).running_mean, _find_bn(bn2).running_mean)
65
+ self.assertTensorClose(_find_bn(bn1).running_var, _find_bn(bn2).running_var)
66
+
67
+ def testSyncBatchNormNormalTrain(self):
68
+ bn = nn.BatchNorm1d(10)
69
+ sync_bn = SynchronizedBatchNorm1d(10)
70
+
71
+ self._checkBatchNormResult(bn, sync_bn, torch.rand(16, 10), True)
72
+
73
+ def testSyncBatchNormNormalEval(self):
74
+ bn = nn.BatchNorm1d(10)
75
+ sync_bn = SynchronizedBatchNorm1d(10)
76
+
77
+ self._checkBatchNormResult(bn, sync_bn, torch.rand(16, 10), False)
78
+
79
+ def testSyncBatchNormSyncTrain(self):
80
+ bn = nn.BatchNorm1d(10, eps=1e-5, affine=False)
81
+ sync_bn = SynchronizedBatchNorm1d(10, eps=1e-5, affine=False)
82
+ sync_bn = DataParallelWithCallback(sync_bn, device_ids=[0, 1])
83
+
84
+ bn.cuda()
85
+ sync_bn.cuda()
86
+
87
+ self._checkBatchNormResult(bn, sync_bn, torch.rand(16, 10), True, cuda=True)
88
+
89
+ def testSyncBatchNormSyncEval(self):
90
+ bn = nn.BatchNorm1d(10, eps=1e-5, affine=False)
91
+ sync_bn = SynchronizedBatchNorm1d(10, eps=1e-5, affine=False)
92
+ sync_bn = DataParallelWithCallback(sync_bn, device_ids=[0, 1])
93
+
94
+ bn.cuda()
95
+ sync_bn.cuda()
96
+
97
+ self._checkBatchNormResult(bn, sync_bn, torch.rand(16, 10), False, cuda=True)
98
+
99
+ def testSyncBatchNorm2DSyncTrain(self):
100
+ bn = nn.BatchNorm2d(10)
101
+ sync_bn = SynchronizedBatchNorm2d(10)
102
+ sync_bn = DataParallelWithCallback(sync_bn, device_ids=[0, 1])
103
+
104
+ bn.cuda()
105
+ sync_bn.cuda()
106
+
107
+ self._checkBatchNormResult(bn, sync_bn, torch.rand(16, 10, 16, 16), True, cuda=True)
108
+
109
+
110
+ if __name__ == '__main__':
111
+ unittest.main()
models/ade20k/segm_lib/nn/modules/unittest.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ # File : unittest.py
3
+ # Author : Jiayuan Mao
4
+ # Email : [email protected]
5
+ # Date : 27/01/2018
6
+ #
7
+ # This file is part of Synchronized-BatchNorm-PyTorch.
8
+ # https://github.com/vacancy/Synchronized-BatchNorm-PyTorch
9
+ # Distributed under MIT License.
10
+
11
+ import unittest
12
+
13
+ import numpy as np
14
+ from torch.autograd import Variable
15
+
16
+
17
+ def as_numpy(v):
18
+ if isinstance(v, Variable):
19
+ v = v.data
20
+ return v.cpu().numpy()
21
+
22
+
23
+ class TorchTestCase(unittest.TestCase):
24
+ def assertTensorClose(self, a, b, atol=1e-3, rtol=1e-3):
25
+ npa, npb = as_numpy(a), as_numpy(b)
26
+ self.assertTrue(
27
+ np.allclose(npa, npb, atol=atol),
28
+ 'Tensor close check failed\n{}\n{}\nadiff={}, rdiff={}'.format(a, b, np.abs(npa - npb).max(), np.abs((npa - npb) / np.fmax(npa, 1e-5)).max())
29
+ )
models/ade20k/segm_lib/nn/parallel/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .data_parallel import UserScatteredDataParallel, user_scattered_collate, async_copy_to
models/ade20k/segm_lib/nn/parallel/data_parallel.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf8 -*-
2
+
3
+ import torch.cuda as cuda
4
+ import torch.nn as nn
5
+ import torch
6
+ import collections
7
+ from torch.nn.parallel._functions import Gather
8
+
9
+
10
+ __all__ = ['UserScatteredDataParallel', 'user_scattered_collate', 'async_copy_to']
11
+
12
+
13
+ def async_copy_to(obj, dev, main_stream=None):
14
+ if torch.is_tensor(obj):
15
+ v = obj.cuda(dev, non_blocking=True)
16
+ if main_stream is not None:
17
+ v.data.record_stream(main_stream)
18
+ return v
19
+ elif isinstance(obj, collections.Mapping):
20
+ return {k: async_copy_to(o, dev, main_stream) for k, o in obj.items()}
21
+ elif isinstance(obj, collections.Sequence):
22
+ return [async_copy_to(o, dev, main_stream) for o in obj]
23
+ else:
24
+ return obj
25
+
26
+
27
+ def dict_gather(outputs, target_device, dim=0):
28
+ """
29
+ Gathers variables from different GPUs on a specified device
30
+ (-1 means the CPU), with dictionary support.
31
+ """
32
+ def gather_map(outputs):
33
+ out = outputs[0]
34
+ if torch.is_tensor(out):
35
+ # MJY(20180330) HACK:: force nr_dims > 0
36
+ if out.dim() == 0:
37
+ outputs = [o.unsqueeze(0) for o in outputs]
38
+ return Gather.apply(target_device, dim, *outputs)
39
+ elif out is None:
40
+ return None
41
+ elif isinstance(out, collections.Mapping):
42
+ return {k: gather_map([o[k] for o in outputs]) for k in out}
43
+ elif isinstance(out, collections.Sequence):
44
+ return type(out)(map(gather_map, zip(*outputs)))
45
+ return gather_map(outputs)
46
+
47
+
48
+ class DictGatherDataParallel(nn.DataParallel):
49
+ def gather(self, outputs, output_device):
50
+ return dict_gather(outputs, output_device, dim=self.dim)
51
+
52
+
53
+ class UserScatteredDataParallel(DictGatherDataParallel):
54
+ def scatter(self, inputs, kwargs, device_ids):
55
+ assert len(inputs) == 1
56
+ inputs = inputs[0]
57
+ inputs = _async_copy_stream(inputs, device_ids)
58
+ inputs = [[i] for i in inputs]
59
+ assert len(kwargs) == 0
60
+ kwargs = [{} for _ in range(len(inputs))]
61
+
62
+ return inputs, kwargs
63
+
64
+
65
+ def user_scattered_collate(batch):
66
+ return batch
67
+
68
+
69
+ def _async_copy(inputs, device_ids):
70
+ nr_devs = len(device_ids)
71
+ assert type(inputs) in (tuple, list)
72
+ assert len(inputs) == nr_devs
73
+
74
+ outputs = []
75
+ for i, dev in zip(inputs, device_ids):
76
+ with cuda.device(dev):
77
+ outputs.append(async_copy_to(i, dev))
78
+
79
+ return tuple(outputs)
80
+
81
+
82
+ def _async_copy_stream(inputs, device_ids):
83
+ nr_devs = len(device_ids)
84
+ assert type(inputs) in (tuple, list)
85
+ assert len(inputs) == nr_devs
86
+
87
+ outputs = []
88
+ streams = [_get_stream(d) for d in device_ids]
89
+ for i, dev, stream in zip(inputs, device_ids, streams):
90
+ with cuda.device(dev):
91
+ main_stream = cuda.current_stream()
92
+ with cuda.stream(stream):
93
+ outputs.append(async_copy_to(i, dev, main_stream=main_stream))
94
+ main_stream.wait_stream(stream)
95
+
96
+ return outputs
97
+
98
+
99
+ """Adapted from: torch/nn/parallel/_functions.py"""
100
+ # background streams used for copying
101
+ _streams = None
102
+
103
+
104
+ def _get_stream(device):
105
+ """Gets a background stream for copying between CPU and GPU"""
106
+ global _streams
107
+ if device == -1:
108
+ return None
109
+ if _streams is None:
110
+ _streams = [None] * cuda.device_count()
111
+ if _streams[device] is None: _streams[device] = cuda.Stream(device)
112
+ return _streams[device]
models/ade20k/segm_lib/utils/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .th import *
models/ade20k/segm_lib/utils/data/__init__.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+
2
+ from .dataset import Dataset, TensorDataset, ConcatDataset
3
+ from .dataloader import DataLoader
models/ade20k/segm_lib/utils/data/dataloader.py ADDED
@@ -0,0 +1,425 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.multiprocessing as multiprocessing
3
+ from torch._C import _set_worker_signal_handlers, \
4
+ _remove_worker_pids, _error_if_any_worker_fails
5
+ try:
6
+ from torch._C import _set_worker_pids
7
+ except:
8
+ from torch._C import _update_worker_pids as _set_worker_pids
9
+ from .sampler import SequentialSampler, RandomSampler, BatchSampler
10
+ import signal
11
+ import collections
12
+ import re
13
+ import sys
14
+ import threading
15
+ import traceback
16
+ from torch._six import string_classes, int_classes
17
+ import numpy as np
18
+
19
+ if sys.version_info[0] == 2:
20
+ import Queue as queue
21
+ else:
22
+ import queue
23
+
24
+
25
+ class ExceptionWrapper(object):
26
+ r"Wraps an exception plus traceback to communicate across threads"
27
+
28
+ def __init__(self, exc_info):
29
+ self.exc_type = exc_info[0]
30
+ self.exc_msg = "".join(traceback.format_exception(*exc_info))
31
+
32
+
33
+ _use_shared_memory = False
34
+ """Whether to use shared memory in default_collate"""
35
+
36
+
37
+ def _worker_loop(dataset, index_queue, data_queue, collate_fn, seed, init_fn, worker_id):
38
+ global _use_shared_memory
39
+ _use_shared_memory = True
40
+
41
+ # Intialize C side signal handlers for SIGBUS and SIGSEGV. Python signal
42
+ # module's handlers are executed after Python returns from C low-level
43
+ # handlers, likely when the same fatal signal happened again already.
44
+ # https://docs.python.org/3/library/signal.html Sec. 18.8.1.1
45
+ _set_worker_signal_handlers()
46
+
47
+ torch.set_num_threads(1)
48
+ torch.manual_seed(seed)
49
+ np.random.seed(seed)
50
+
51
+ if init_fn is not None:
52
+ init_fn(worker_id)
53
+
54
+ while True:
55
+ r = index_queue.get()
56
+ if r is None:
57
+ break
58
+ idx, batch_indices = r
59
+ try:
60
+ samples = collate_fn([dataset[i] for i in batch_indices])
61
+ except Exception:
62
+ data_queue.put((idx, ExceptionWrapper(sys.exc_info())))
63
+ else:
64
+ data_queue.put((idx, samples))
65
+
66
+
67
+ def _worker_manager_loop(in_queue, out_queue, done_event, pin_memory, device_id):
68
+ if pin_memory:
69
+ torch.cuda.set_device(device_id)
70
+
71
+ while True:
72
+ try:
73
+ r = in_queue.get()
74
+ except Exception:
75
+ if done_event.is_set():
76
+ return
77
+ raise
78
+ if r is None:
79
+ break
80
+ if isinstance(r[1], ExceptionWrapper):
81
+ out_queue.put(r)
82
+ continue
83
+ idx, batch = r
84
+ try:
85
+ if pin_memory:
86
+ batch = pin_memory_batch(batch)
87
+ except Exception:
88
+ out_queue.put((idx, ExceptionWrapper(sys.exc_info())))
89
+ else:
90
+ out_queue.put((idx, batch))
91
+
92
+ numpy_type_map = {
93
+ 'float64': torch.DoubleTensor,
94
+ 'float32': torch.FloatTensor,
95
+ 'float16': torch.HalfTensor,
96
+ 'int64': torch.LongTensor,
97
+ 'int32': torch.IntTensor,
98
+ 'int16': torch.ShortTensor,
99
+ 'int8': torch.CharTensor,
100
+ 'uint8': torch.ByteTensor,
101
+ }
102
+
103
+
104
+ def default_collate(batch):
105
+ "Puts each data field into a tensor with outer dimension batch size"
106
+
107
+ error_msg = "batch must contain tensors, numbers, dicts or lists; found {}"
108
+ elem_type = type(batch[0])
109
+ if torch.is_tensor(batch[0]):
110
+ out = None
111
+ if _use_shared_memory:
112
+ # If we're in a background process, concatenate directly into a
113
+ # shared memory tensor to avoid an extra copy
114
+ numel = sum([x.numel() for x in batch])
115
+ storage = batch[0].storage()._new_shared(numel)
116
+ out = batch[0].new(storage)
117
+ return torch.stack(batch, 0, out=out)
118
+ elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \
119
+ and elem_type.__name__ != 'string_':
120
+ elem = batch[0]
121
+ if elem_type.__name__ == 'ndarray':
122
+ # array of string classes and object
123
+ if re.search('[SaUO]', elem.dtype.str) is not None:
124
+ raise TypeError(error_msg.format(elem.dtype))
125
+
126
+ return torch.stack([torch.from_numpy(b) for b in batch], 0)
127
+ if elem.shape == (): # scalars
128
+ py_type = float if elem.dtype.name.startswith('float') else int
129
+ return numpy_type_map[elem.dtype.name](list(map(py_type, batch)))
130
+ elif isinstance(batch[0], int_classes):
131
+ return torch.LongTensor(batch)
132
+ elif isinstance(batch[0], float):
133
+ return torch.DoubleTensor(batch)
134
+ elif isinstance(batch[0], string_classes):
135
+ return batch
136
+ elif isinstance(batch[0], collections.Mapping):
137
+ return {key: default_collate([d[key] for d in batch]) for key in batch[0]}
138
+ elif isinstance(batch[0], collections.Sequence):
139
+ transposed = zip(*batch)
140
+ return [default_collate(samples) for samples in transposed]
141
+
142
+ raise TypeError((error_msg.format(type(batch[0]))))
143
+
144
+
145
+ def pin_memory_batch(batch):
146
+ if torch.is_tensor(batch):
147
+ return batch.pin_memory()
148
+ elif isinstance(batch, string_classes):
149
+ return batch
150
+ elif isinstance(batch, collections.Mapping):
151
+ return {k: pin_memory_batch(sample) for k, sample in batch.items()}
152
+ elif isinstance(batch, collections.Sequence):
153
+ return [pin_memory_batch(sample) for sample in batch]
154
+ else:
155
+ return batch
156
+
157
+
158
+ _SIGCHLD_handler_set = False
159
+ """Whether SIGCHLD handler is set for DataLoader worker failures. Only one
160
+ handler needs to be set for all DataLoaders in a process."""
161
+
162
+
163
+ def _set_SIGCHLD_handler():
164
+ # Windows doesn't support SIGCHLD handler
165
+ if sys.platform == 'win32':
166
+ return
167
+ # can't set signal in child threads
168
+ if not isinstance(threading.current_thread(), threading._MainThread):
169
+ return
170
+ global _SIGCHLD_handler_set
171
+ if _SIGCHLD_handler_set:
172
+ return
173
+ previous_handler = signal.getsignal(signal.SIGCHLD)
174
+ if not callable(previous_handler):
175
+ previous_handler = None
176
+
177
+ def handler(signum, frame):
178
+ # This following call uses `waitid` with WNOHANG from C side. Therefore,
179
+ # Python can still get and update the process status successfully.
180
+ _error_if_any_worker_fails()
181
+ if previous_handler is not None:
182
+ previous_handler(signum, frame)
183
+
184
+ signal.signal(signal.SIGCHLD, handler)
185
+ _SIGCHLD_handler_set = True
186
+
187
+
188
+ class DataLoaderIter(object):
189
+ "Iterates once over the DataLoader's dataset, as specified by the sampler"
190
+
191
+ def __init__(self, loader):
192
+ self.dataset = loader.dataset
193
+ self.collate_fn = loader.collate_fn
194
+ self.batch_sampler = loader.batch_sampler
195
+ self.num_workers = loader.num_workers
196
+ self.pin_memory = loader.pin_memory and torch.cuda.is_available()
197
+ self.timeout = loader.timeout
198
+ self.done_event = threading.Event()
199
+
200
+ self.sample_iter = iter(self.batch_sampler)
201
+
202
+ if self.num_workers > 0:
203
+ self.worker_init_fn = loader.worker_init_fn
204
+ self.index_queue = multiprocessing.SimpleQueue()
205
+ self.worker_result_queue = multiprocessing.SimpleQueue()
206
+ self.batches_outstanding = 0
207
+ self.worker_pids_set = False
208
+ self.shutdown = False
209
+ self.send_idx = 0
210
+ self.rcvd_idx = 0
211
+ self.reorder_dict = {}
212
+
213
+ base_seed = torch.LongTensor(1).random_(0, 2**31-1)[0]
214
+ self.workers = [
215
+ multiprocessing.Process(
216
+ target=_worker_loop,
217
+ args=(self.dataset, self.index_queue, self.worker_result_queue, self.collate_fn,
218
+ base_seed + i, self.worker_init_fn, i))
219
+ for i in range(self.num_workers)]
220
+
221
+ if self.pin_memory or self.timeout > 0:
222
+ self.data_queue = queue.Queue()
223
+ if self.pin_memory:
224
+ maybe_device_id = torch.cuda.current_device()
225
+ else:
226
+ # do not initialize cuda context if not necessary
227
+ maybe_device_id = None
228
+ self.worker_manager_thread = threading.Thread(
229
+ target=_worker_manager_loop,
230
+ args=(self.worker_result_queue, self.data_queue, self.done_event, self.pin_memory,
231
+ maybe_device_id))
232
+ self.worker_manager_thread.daemon = True
233
+ self.worker_manager_thread.start()
234
+ else:
235
+ self.data_queue = self.worker_result_queue
236
+
237
+ for w in self.workers:
238
+ w.daemon = True # ensure that the worker exits on process exit
239
+ w.start()
240
+
241
+ _set_worker_pids(id(self), tuple(w.pid for w in self.workers))
242
+ _set_SIGCHLD_handler()
243
+ self.worker_pids_set = True
244
+
245
+ # prime the prefetch loop
246
+ for _ in range(2 * self.num_workers):
247
+ self._put_indices()
248
+
249
+ def __len__(self):
250
+ return len(self.batch_sampler)
251
+
252
+ def _get_batch(self):
253
+ if self.timeout > 0:
254
+ try:
255
+ return self.data_queue.get(timeout=self.timeout)
256
+ except queue.Empty:
257
+ raise RuntimeError('DataLoader timed out after {} seconds'.format(self.timeout))
258
+ else:
259
+ return self.data_queue.get()
260
+
261
+ def __next__(self):
262
+ if self.num_workers == 0: # same-process loading
263
+ indices = next(self.sample_iter) # may raise StopIteration
264
+ batch = self.collate_fn([self.dataset[i] for i in indices])
265
+ if self.pin_memory:
266
+ batch = pin_memory_batch(batch)
267
+ return batch
268
+
269
+ # check if the next sample has already been generated
270
+ if self.rcvd_idx in self.reorder_dict:
271
+ batch = self.reorder_dict.pop(self.rcvd_idx)
272
+ return self._process_next_batch(batch)
273
+
274
+ if self.batches_outstanding == 0:
275
+ self._shutdown_workers()
276
+ raise StopIteration
277
+
278
+ while True:
279
+ assert (not self.shutdown and self.batches_outstanding > 0)
280
+ idx, batch = self._get_batch()
281
+ self.batches_outstanding -= 1
282
+ if idx != self.rcvd_idx:
283
+ # store out-of-order samples
284
+ self.reorder_dict[idx] = batch
285
+ continue
286
+ return self._process_next_batch(batch)
287
+
288
+ next = __next__ # Python 2 compatibility
289
+
290
+ def __iter__(self):
291
+ return self
292
+
293
+ def _put_indices(self):
294
+ assert self.batches_outstanding < 2 * self.num_workers
295
+ indices = next(self.sample_iter, None)
296
+ if indices is None:
297
+ return
298
+ self.index_queue.put((self.send_idx, indices))
299
+ self.batches_outstanding += 1
300
+ self.send_idx += 1
301
+
302
+ def _process_next_batch(self, batch):
303
+ self.rcvd_idx += 1
304
+ self._put_indices()
305
+ if isinstance(batch, ExceptionWrapper):
306
+ raise batch.exc_type(batch.exc_msg)
307
+ return batch
308
+
309
+ def __getstate__(self):
310
+ # TODO: add limited pickling support for sharing an iterator
311
+ # across multiple threads for HOGWILD.
312
+ # Probably the best way to do this is by moving the sample pushing
313
+ # to a separate thread and then just sharing the data queue
314
+ # but signalling the end is tricky without a non-blocking API
315
+ raise NotImplementedError("DataLoaderIterator cannot be pickled")
316
+
317
+ def _shutdown_workers(self):
318
+ try:
319
+ if not self.shutdown:
320
+ self.shutdown = True
321
+ self.done_event.set()
322
+ # if worker_manager_thread is waiting to put
323
+ while not self.data_queue.empty():
324
+ self.data_queue.get()
325
+ for _ in self.workers:
326
+ self.index_queue.put(None)
327
+ # done_event should be sufficient to exit worker_manager_thread,
328
+ # but be safe here and put another None
329
+ self.worker_result_queue.put(None)
330
+ finally:
331
+ # removes pids no matter what
332
+ if self.worker_pids_set:
333
+ _remove_worker_pids(id(self))
334
+ self.worker_pids_set = False
335
+
336
+ def __del__(self):
337
+ if self.num_workers > 0:
338
+ self._shutdown_workers()
339
+
340
+
341
+ class DataLoader(object):
342
+ """
343
+ Data loader. Combines a dataset and a sampler, and provides
344
+ single- or multi-process iterators over the dataset.
345
+
346
+ Arguments:
347
+ dataset (Dataset): dataset from which to load the data.
348
+ batch_size (int, optional): how many samples per batch to load
349
+ (default: 1).
350
+ shuffle (bool, optional): set to ``True`` to have the data reshuffled
351
+ at every epoch (default: False).
352
+ sampler (Sampler, optional): defines the strategy to draw samples from
353
+ the dataset. If specified, ``shuffle`` must be False.
354
+ batch_sampler (Sampler, optional): like sampler, but returns a batch of
355
+ indices at a time. Mutually exclusive with batch_size, shuffle,
356
+ sampler, and drop_last.
357
+ num_workers (int, optional): how many subprocesses to use for data
358
+ loading. 0 means that the data will be loaded in the main process.
359
+ (default: 0)
360
+ collate_fn (callable, optional): merges a list of samples to form a mini-batch.
361
+ pin_memory (bool, optional): If ``True``, the data loader will copy tensors
362
+ into CUDA pinned memory before returning them.
363
+ drop_last (bool, optional): set to ``True`` to drop the last incomplete batch,
364
+ if the dataset size is not divisible by the batch size. If ``False`` and
365
+ the size of dataset is not divisible by the batch size, then the last batch
366
+ will be smaller. (default: False)
367
+ timeout (numeric, optional): if positive, the timeout value for collecting a batch
368
+ from workers. Should always be non-negative. (default: 0)
369
+ worker_init_fn (callable, optional): If not None, this will be called on each
370
+ worker subprocess with the worker id (an int in ``[0, num_workers - 1]``) as
371
+ input, after seeding and before data loading. (default: None)
372
+
373
+ .. note:: By default, each worker will have its PyTorch seed set to
374
+ ``base_seed + worker_id``, where ``base_seed`` is a long generated
375
+ by main process using its RNG. You may use ``torch.initial_seed()`` to access
376
+ this value in :attr:`worker_init_fn`, which can be used to set other seeds
377
+ (e.g. NumPy) before data loading.
378
+
379
+ .. warning:: If ``spawn'' start method is used, :attr:`worker_init_fn` cannot be an
380
+ unpicklable object, e.g., a lambda function.
381
+ """
382
+
383
+ def __init__(self, dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None,
384
+ num_workers=0, collate_fn=default_collate, pin_memory=False, drop_last=False,
385
+ timeout=0, worker_init_fn=None):
386
+ self.dataset = dataset
387
+ self.batch_size = batch_size
388
+ self.num_workers = num_workers
389
+ self.collate_fn = collate_fn
390
+ self.pin_memory = pin_memory
391
+ self.drop_last = drop_last
392
+ self.timeout = timeout
393
+ self.worker_init_fn = worker_init_fn
394
+
395
+ if timeout < 0:
396
+ raise ValueError('timeout option should be non-negative')
397
+
398
+ if batch_sampler is not None:
399
+ if batch_size > 1 or shuffle or sampler is not None or drop_last:
400
+ raise ValueError('batch_sampler is mutually exclusive with '
401
+ 'batch_size, shuffle, sampler, and drop_last')
402
+
403
+ if sampler is not None and shuffle:
404
+ raise ValueError('sampler is mutually exclusive with shuffle')
405
+
406
+ if self.num_workers < 0:
407
+ raise ValueError('num_workers cannot be negative; '
408
+ 'use num_workers=0 to disable multiprocessing.')
409
+
410
+ if batch_sampler is None:
411
+ if sampler is None:
412
+ if shuffle:
413
+ sampler = RandomSampler(dataset)
414
+ else:
415
+ sampler = SequentialSampler(dataset)
416
+ batch_sampler = BatchSampler(sampler, batch_size, drop_last)
417
+
418
+ self.sampler = sampler
419
+ self.batch_sampler = batch_sampler
420
+
421
+ def __iter__(self):
422
+ return DataLoaderIter(self)
423
+
424
+ def __len__(self):
425
+ return len(self.batch_sampler)
models/ade20k/segm_lib/utils/data/dataset.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import bisect
2
+ import warnings
3
+
4
+ from torch._utils import _accumulate
5
+ from torch import randperm
6
+
7
+
8
+ class Dataset(object):
9
+ """An abstract class representing a Dataset.
10
+
11
+ All other datasets should subclass it. All subclasses should override
12
+ ``__len__``, that provides the size of the dataset, and ``__getitem__``,
13
+ supporting integer indexing in range from 0 to len(self) exclusive.
14
+ """
15
+
16
+ def __getitem__(self, index):
17
+ raise NotImplementedError
18
+
19
+ def __len__(self):
20
+ raise NotImplementedError
21
+
22
+ def __add__(self, other):
23
+ return ConcatDataset([self, other])
24
+
25
+
26
+ class TensorDataset(Dataset):
27
+ """Dataset wrapping data and target tensors.
28
+
29
+ Each sample will be retrieved by indexing both tensors along the first
30
+ dimension.
31
+
32
+ Arguments:
33
+ data_tensor (Tensor): contains sample data.
34
+ target_tensor (Tensor): contains sample targets (labels).
35
+ """
36
+
37
+ def __init__(self, data_tensor, target_tensor):
38
+ assert data_tensor.size(0) == target_tensor.size(0)
39
+ self.data_tensor = data_tensor
40
+ self.target_tensor = target_tensor
41
+
42
+ def __getitem__(self, index):
43
+ return self.data_tensor[index], self.target_tensor[index]
44
+
45
+ def __len__(self):
46
+ return self.data_tensor.size(0)
47
+
48
+
49
+ class ConcatDataset(Dataset):
50
+ """
51
+ Dataset to concatenate multiple datasets.
52
+ Purpose: useful to assemble different existing datasets, possibly
53
+ large-scale datasets as the concatenation operation is done in an
54
+ on-the-fly manner.
55
+
56
+ Arguments:
57
+ datasets (iterable): List of datasets to be concatenated
58
+ """
59
+
60
+ @staticmethod
61
+ def cumsum(sequence):
62
+ r, s = [], 0
63
+ for e in sequence:
64
+ l = len(e)
65
+ r.append(l + s)
66
+ s += l
67
+ return r
68
+
69
+ def __init__(self, datasets):
70
+ super(ConcatDataset, self).__init__()
71
+ assert len(datasets) > 0, 'datasets should not be an empty iterable'
72
+ self.datasets = list(datasets)
73
+ self.cumulative_sizes = self.cumsum(self.datasets)
74
+
75
+ def __len__(self):
76
+ return self.cumulative_sizes[-1]
77
+
78
+ def __getitem__(self, idx):
79
+ dataset_idx = bisect.bisect_right(self.cumulative_sizes, idx)
80
+ if dataset_idx == 0:
81
+ sample_idx = idx
82
+ else:
83
+ sample_idx = idx - self.cumulative_sizes[dataset_idx - 1]
84
+ return self.datasets[dataset_idx][sample_idx]
85
+
86
+ @property
87
+ def cummulative_sizes(self):
88
+ warnings.warn("cummulative_sizes attribute is renamed to "
89
+ "cumulative_sizes", DeprecationWarning, stacklevel=2)
90
+ return self.cumulative_sizes
91
+
92
+
93
+ class Subset(Dataset):
94
+ def __init__(self, dataset, indices):
95
+ self.dataset = dataset
96
+ self.indices = indices
97
+
98
+ def __getitem__(self, idx):
99
+ return self.dataset[self.indices[idx]]
100
+
101
+ def __len__(self):
102
+ return len(self.indices)
103
+
104
+
105
+ def random_split(dataset, lengths):
106
+ """
107
+ Randomly split a dataset into non-overlapping new datasets of given lengths
108
+ ds
109
+
110
+ Arguments:
111
+ dataset (Dataset): Dataset to be split
112
+ lengths (iterable): lengths of splits to be produced
113
+ """
114
+ if sum(lengths) != len(dataset):
115
+ raise ValueError("Sum of input lengths does not equal the length of the input dataset!")
116
+
117
+ indices = randperm(sum(lengths))
118
+ return [Subset(dataset, indices[offset - length:offset]) for offset, length in zip(_accumulate(lengths), lengths)]
models/ade20k/segm_lib/utils/data/distributed.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ from .sampler import Sampler
4
+ from torch.distributed import get_world_size, get_rank
5
+
6
+
7
+ class DistributedSampler(Sampler):
8
+ """Sampler that restricts data loading to a subset of the dataset.
9
+
10
+ It is especially useful in conjunction with
11
+ :class:`torch.nn.parallel.DistributedDataParallel`. In such case, each
12
+ process can pass a DistributedSampler instance as a DataLoader sampler,
13
+ and load a subset of the original dataset that is exclusive to it.
14
+
15
+ .. note::
16
+ Dataset is assumed to be of constant size.
17
+
18
+ Arguments:
19
+ dataset: Dataset used for sampling.
20
+ num_replicas (optional): Number of processes participating in
21
+ distributed training.
22
+ rank (optional): Rank of the current process within num_replicas.
23
+ """
24
+
25
+ def __init__(self, dataset, num_replicas=None, rank=None):
26
+ if num_replicas is None:
27
+ num_replicas = get_world_size()
28
+ if rank is None:
29
+ rank = get_rank()
30
+ self.dataset = dataset
31
+ self.num_replicas = num_replicas
32
+ self.rank = rank
33
+ self.epoch = 0
34
+ self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas))
35
+ self.total_size = self.num_samples * self.num_replicas
36
+
37
+ def __iter__(self):
38
+ # deterministically shuffle based on epoch
39
+ g = torch.Generator()
40
+ g.manual_seed(self.epoch)
41
+ indices = list(torch.randperm(len(self.dataset), generator=g))
42
+
43
+ # add extra samples to make it evenly divisible
44
+ indices += indices[:(self.total_size - len(indices))]
45
+ assert len(indices) == self.total_size
46
+
47
+ # subsample
48
+ offset = self.num_samples * self.rank
49
+ indices = indices[offset:offset + self.num_samples]
50
+ assert len(indices) == self.num_samples
51
+
52
+ return iter(indices)
53
+
54
+ def __len__(self):
55
+ return self.num_samples
56
+
57
+ def set_epoch(self, epoch):
58
+ self.epoch = epoch
models/ade20k/segm_lib/utils/data/sampler.py ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+
4
+ class Sampler(object):
5
+ """Base class for all Samplers.
6
+
7
+ Every Sampler subclass has to provide an __iter__ method, providing a way
8
+ to iterate over indices of dataset elements, and a __len__ method that
9
+ returns the length of the returned iterators.
10
+ """
11
+
12
+ def __init__(self, data_source):
13
+ pass
14
+
15
+ def __iter__(self):
16
+ raise NotImplementedError
17
+
18
+ def __len__(self):
19
+ raise NotImplementedError
20
+
21
+
22
+ class SequentialSampler(Sampler):
23
+ """Samples elements sequentially, always in the same order.
24
+
25
+ Arguments:
26
+ data_source (Dataset): dataset to sample from
27
+ """
28
+
29
+ def __init__(self, data_source):
30
+ self.data_source = data_source
31
+
32
+ def __iter__(self):
33
+ return iter(range(len(self.data_source)))
34
+
35
+ def __len__(self):
36
+ return len(self.data_source)
37
+
38
+
39
+ class RandomSampler(Sampler):
40
+ """Samples elements randomly, without replacement.
41
+
42
+ Arguments:
43
+ data_source (Dataset): dataset to sample from
44
+ """
45
+
46
+ def __init__(self, data_source):
47
+ self.data_source = data_source
48
+
49
+ def __iter__(self):
50
+ return iter(torch.randperm(len(self.data_source)).long())
51
+
52
+ def __len__(self):
53
+ return len(self.data_source)
54
+
55
+
56
+ class SubsetRandomSampler(Sampler):
57
+ """Samples elements randomly from a given list of indices, without replacement.
58
+
59
+ Arguments:
60
+ indices (list): a list of indices
61
+ """
62
+
63
+ def __init__(self, indices):
64
+ self.indices = indices
65
+
66
+ def __iter__(self):
67
+ return (self.indices[i] for i in torch.randperm(len(self.indices)))
68
+
69
+ def __len__(self):
70
+ return len(self.indices)
71
+
72
+
73
+ class WeightedRandomSampler(Sampler):
74
+ """Samples elements from [0,..,len(weights)-1] with given probabilities (weights).
75
+
76
+ Arguments:
77
+ weights (list) : a list of weights, not necessary summing up to one
78
+ num_samples (int): number of samples to draw
79
+ replacement (bool): if ``True``, samples are drawn with replacement.
80
+ If not, they are drawn without replacement, which means that when a
81
+ sample index is drawn for a row, it cannot be drawn again for that row.
82
+ """
83
+
84
+ def __init__(self, weights, num_samples, replacement=True):
85
+ self.weights = torch.DoubleTensor(weights)
86
+ self.num_samples = num_samples
87
+ self.replacement = replacement
88
+
89
+ def __iter__(self):
90
+ return iter(torch.multinomial(self.weights, self.num_samples, self.replacement))
91
+
92
+ def __len__(self):
93
+ return self.num_samples
94
+
95
+
96
+ class BatchSampler(object):
97
+ """Wraps another sampler to yield a mini-batch of indices.
98
+
99
+ Args:
100
+ sampler (Sampler): Base sampler.
101
+ batch_size (int): Size of mini-batch.
102
+ drop_last (bool): If ``True``, the sampler will drop the last batch if
103
+ its size would be less than ``batch_size``
104
+
105
+ Example:
106
+ >>> list(BatchSampler(range(10), batch_size=3, drop_last=False))
107
+ [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]
108
+ >>> list(BatchSampler(range(10), batch_size=3, drop_last=True))
109
+ [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
110
+ """
111
+
112
+ def __init__(self, sampler, batch_size, drop_last):
113
+ self.sampler = sampler
114
+ self.batch_size = batch_size
115
+ self.drop_last = drop_last
116
+
117
+ def __iter__(self):
118
+ batch = []
119
+ for idx in self.sampler:
120
+ batch.append(idx)
121
+ if len(batch) == self.batch_size:
122
+ yield batch
123
+ batch = []
124
+ if len(batch) > 0 and not self.drop_last:
125
+ yield batch
126
+
127
+ def __len__(self):
128
+ if self.drop_last:
129
+ return len(self.sampler) // self.batch_size
130
+ else:
131
+ return (len(self.sampler) + self.batch_size - 1) // self.batch_size
models/ade20k/segm_lib/utils/th.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.autograd import Variable
3
+ import numpy as np
4
+ import collections
5
+
6
+ __all__ = ['as_variable', 'as_numpy', 'mark_volatile']
7
+
8
+ def as_variable(obj):
9
+ if isinstance(obj, Variable):
10
+ return obj
11
+ if isinstance(obj, collections.Sequence):
12
+ return [as_variable(v) for v in obj]
13
+ elif isinstance(obj, collections.Mapping):
14
+ return {k: as_variable(v) for k, v in obj.items()}
15
+ else:
16
+ return Variable(obj)
17
+
18
+ def as_numpy(obj):
19
+ if isinstance(obj, collections.Sequence):
20
+ return [as_numpy(v) for v in obj]
21
+ elif isinstance(obj, collections.Mapping):
22
+ return {k: as_numpy(v) for k, v in obj.items()}
23
+ elif isinstance(obj, Variable):
24
+ return obj.data.cpu().numpy()
25
+ elif torch.is_tensor(obj):
26
+ return obj.cpu().numpy()
27
+ else:
28
+ return np.array(obj)
29
+
30
+ def mark_volatile(obj):
31
+ if torch.is_tensor(obj):
32
+ obj = Variable(obj)
33
+ if isinstance(obj, Variable):
34
+ obj.no_grad = True
35
+ return obj
36
+ elif isinstance(obj, collections.Mapping):
37
+ return {k: mark_volatile(o) for k, o in obj.items()}
38
+ elif isinstance(obj, collections.Sequence):
39
+ return [mark_volatile(o) for o in obj]
40
+ else:
41
+ return obj
models/ade20k/utils.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Modified from https://github.com/CSAILVision/semantic-segmentation-pytorch"""
2
+
3
+ import os
4
+ import sys
5
+
6
+ import numpy as np
7
+ import torch
8
+
9
+ try:
10
+ from urllib import urlretrieve
11
+ except ImportError:
12
+ from urllib.request import urlretrieve
13
+
14
+
15
+ def load_url(url, model_dir='./pretrained', map_location=None):
16
+ if not os.path.exists(model_dir):
17
+ os.makedirs(model_dir)
18
+ filename = url.split('/')[-1]
19
+ cached_file = os.path.join(model_dir, filename)
20
+ if not os.path.exists(cached_file):
21
+ sys.stderr.write('Downloading: "{}" to {}\n'.format(url, cached_file))
22
+ urlretrieve(url, cached_file)
23
+ return torch.load(cached_file, map_location=map_location)
24
+
25
+
26
+ def color_encode(labelmap, colors, mode='RGB'):
27
+ labelmap = labelmap.astype('int')
28
+ labelmap_rgb = np.zeros((labelmap.shape[0], labelmap.shape[1], 3),
29
+ dtype=np.uint8)
30
+ for label in np.unique(labelmap):
31
+ if label < 0:
32
+ continue
33
+ labelmap_rgb += (labelmap == label)[:, :, np.newaxis] * \
34
+ np.tile(colors[label],
35
+ (labelmap.shape[0], labelmap.shape[1], 1))
36
+
37
+ if mode == 'BGR':
38
+ return labelmap_rgb[:, :, ::-1]
39
+ else:
40
+ return labelmap_rgb
models/lpips_models/alex.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df73285e35b22355a2df87cdb6b70b343713b667eddbda73e1977e0c860835c0
3
+ size 6009
models/lpips_models/squeeze.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a5350f23600cb79923ce65bb07cbf57dca461329894153e05a1346bd531cf76
3
+ size 10811
models/lpips_models/vgg.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a78928a0af1e5f0fcb1f3b9e8f8c3a2a5a3de244d830ad5c1feddc79b8432868
3
+ size 7289