kyunghun
Add application file
9178cf3
raw
history blame
5.65 kB
import matplotlib.pyplot as plt
import librosa
import librosa.display
import numpy as np
import os,sys
import ruptures as rpt
from glob import glob
from tqdm import tqdm
import soundfile
import pandas as pd
import csv
import gradio as gr
def fig_ax(figsize=(15, 5), dpi=150):
"""Return a (matplotlib) figure and ax objects with given size."""
return plt.subplots(figsize=figsize, dpi=dpi)
def get_sum_of_cost(algo, n_bkps) -> float:
"""Return the sum of costs for the change points `bkps`"""
bkps = algo.predict(n_bkps=n_bkps)
return algo.cost.sum_of_costs(bkps)
def variable_outputs(k):
k = int(k)
return [gr.Audio(visible=True)]*k + [gr.Audio(visible=False)]*(10-k)
def generate(wavfile,target_sampling_rate,hop_length_tempo,n_bkps_max):
if target_sampling_rate is not None:
signal2, sampling_rate = librosa.load(wavfile,sr=target_sampling_rate,mono=False)
else:
signal2, sampling_rate = librosa.load(wavfile,mono=False)
signal = signal2.sum(axis=0) / 2
# Compute the onset strength
hop_length_tempo = 512
oenv = librosa.onset.onset_strength(
y=signal, sr=sampling_rate, hop_length=hop_length_tempo
)
# Compute the tempogram
tempogram = librosa.feature.tempogram(
onset_envelope=oenv,
sr=sampling_rate,
hop_length=hop_length_tempo,
)
algo = rpt.KernelCPD(kernel="linear").fit(tempogram.T)
# Choose the number of changes (elbow heuristic)
n_bkps_max = 10 # K_max
# Start by computing the segmentation with most changes.
# After start, all segmentations with 1, 2,..., K_max-1 changes are also available for free.
_ = algo.predict(n_bkps_max)
array_of_n_bkps = np.arange(1, n_bkps_max + 1)
ex = [get_sum_of_cost(algo=algo, n_bkps=n_bkps) for n_bkps in array_of_n_bkps]
# print(ex[0])
biggiest=0
for i in range(1,len(ex)):
if abs(ex[i]- ex[i-1])>biggiest:
biggiest=abs(ex[i]- ex[i-1])
n_bkps=i+2
bkps = algo.predict(n_bkps=n_bkps)
# Convert the estimated change points (frame counts) to actual timestamps
bkps_times = librosa.frames_to_time(bkps, sr=sampling_rate, hop_length=hop_length_tempo)
# Compute change points corresponding indexes in original signal
bkps_time_indexes = (sampling_rate * bkps_times).astype(int).tolist()
bkps = [i//sampling_rate for i in bkps_time_indexes]
# print(bkps_time_indexes)
new_bkps_time_indexes =[]
if len(bkps_time_indexes)>2:
for i in range(len(bkps_time_indexes)):
if i==0:
if bkps_time_indexes[i]>=10*sampling_rate:
new_bkps_time_indexes.append(bkps_time_indexes[i])
elif i==len(bkps_time_indexes)-1:
if bkps_time_indexes[i]-bkps_time_indexes[i-1]<5*sampling_rate:
new_bkps_time_indexes.remove(new_bkps_time_indexes[-1])
new_bkps_time_indexes.append(bkps_time_indexes[i])
else:
if bkps_time_indexes[i]-bkps_time_indexes[i-1]>=10*sampling_rate:
new_bkps_time_indexes.append(bkps_time_indexes[i])
bkps_time_indexes = new_bkps_time_indexes
fig, ax = fig_ax()
_ = librosa.display.specshow(
tempogram,
ax=ax,
x_axis="s",
y_axis="tempo",
hop_length=hop_length_tempo,
sr=sampling_rate,
)
new_bkps_times = [ x/sampling_rate for x in bkps_time_indexes]
for b in new_bkps_times:
ax.axvline(b, ls="--", color="white", lw=4)
seg_list = []
for segment_number, (start, end) in enumerate(
rpt.utils.pairwise([0] + bkps_time_indexes), start=1
):
save_name= f"output_{segment_number}.mp3"
segment = signal2[:,start:end]
seg_list.append(save_name)
soundfile.write(save_name,
segment.T,
int(sampling_rate),
format='MP3'
)
seg_len = len(seg_list)
for i in range(10-seg_len):
seg_list.append("None")
return fig,seg_len,*seg_list
def list_map(lists):
print(len(lists), len(RESULTS))
for i in range(len(lists)):
RESULTS[i]= str(lists[i])
return RESULTS
with gr.Blocks() as demo:
gr.Markdown(
'''
# Demo of Music Segmentation(Intro, Verse, Outro..) using Change Detection Algoritm
'''
)
result_list = gr.State()
with gr.Column():
with gr.Row():
with gr.Column():
wavfile = gr.Audio(sources="upload", type="filepath")
btn_submit = gr.Button()
result_image = gr.Plot(label="result")
with gr.Accordion(label="Settings", open=False):
target_sampling_rate = gr.Number(label="target_sampling_rate", value=44100, interactive=True)
hop_length_tempo = gr.Number(label="hop_length_tempo", value=512, interactive=True)
n_bkps_max = gr.Number(label="n_bkps_max", value=10, interactive=True)
result_len = gr.Number(label="result_len",value=10,interactive=False)
RESULTS = []
with gr.Column():
for i in range(1,11):
w = gr.Audio(label=f"result part {i}",visible=False,type="filepath")
RESULTS.append(w)
result_len.change(variable_outputs,result_len,RESULTS)
# result_len.change(list_map,result_list,RESULTS)
btn_submit.click(
fn=generate,
inputs=[
wavfile,target_sampling_rate,hop_length_tempo,n_bkps_max
],
outputs=[
result_image,result_len,*RESULTS
],
)
demo.queue().launch(server_name="0.0.0.0")