Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,493 Bytes
ece05f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
# Copyright © Alibaba, Inc. and its affiliates.
import random
from typing import Any, Dict
import numpy as np
import torch
from diffusers import (ControlNetModel, DiffusionPipeline,
EulerAncestralDiscreteScheduler,
UniPCMultistepScheduler)
from PIL import Image
from RealESRGAN import RealESRGAN
from .pipeline_base import StableDiffusionBlendExtendPipeline
from .pipeline_sr import StableDiffusionControlNetImg2ImgPanoPipeline
class LazyRealESRGAN:
def __init__(self, device, scale):
self.device = device
self.scale = scale
self.model = None
self.model_path = None
def load_model(self):
if self.model is None:
self.model = RealESRGAN(self.device, scale=self.scale)
self.model.load_weights(self.model_path, download=False)
def predict(self, img):
self.load_model()
return self.model.predict(img)
class Text2360PanoramaImagePipeline(DiffusionPipeline):
""" Stable Diffusion for 360 Panorama Image Generation Pipeline.
Example:
>>> import torch
>>> from txt2panoimg import Text2360PanoramaImagePipeline
>>> prompt = 'The mountains'
>>> input = {'prompt': prompt, 'upscale': True}
>>> model_id = 'models/'
>>> txt2panoimg = Text2360PanoramaImagePipeline(model_id, torch_dtype=torch.float16)
>>> output = txt2panoimg(input)
>>> output.save('result.png')
"""
def __init__(self, model: str, device: str = 'cuda', **kwargs):
"""
Use `model` to create a stable diffusion pipeline for 360 panorama image generation.
Args:
model: model id on modelscope hub.
device: str = 'cuda'
"""
super().__init__()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu'
) if device is None else device
if device == 'gpu':
device = torch.device('cuda')
torch_dtype = kwargs.get('torch_dtype', torch.float16)
enable_xformers_memory_efficient_attention = kwargs.get(
'enable_xformers_memory_efficient_attention', True)
model_id = model + '/sd-base/'
# init base model
self.pipe = StableDiffusionBlendExtendPipeline.from_pretrained(
model_id, torch_dtype=torch_dtype).to(device)
self.pipe.vae.enable_tiling()
self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(
self.pipe.scheduler.config)
# remove following line if xformers is not installed
try:
if enable_xformers_memory_efficient_attention:
self.pipe.enable_xformers_memory_efficient_attention()
except Exception as e:
print(e)
# init controlnet-sr model
base_model_path = model + '/sr-base'
controlnet_path = model + '/sr-control'
controlnet = ControlNetModel.from_pretrained(
controlnet_path, torch_dtype=torch_dtype)
self.pipe_sr = StableDiffusionControlNetImg2ImgPanoPipeline.from_pretrained(
base_model_path, controlnet=controlnet,
torch_dtype=torch_dtype).to(device)
self.pipe_sr.scheduler = UniPCMultistepScheduler.from_config(
self.pipe.scheduler.config)
self.pipe_sr.vae.enable_tiling()
# remove following line if xformers is not installed
try:
if enable_xformers_memory_efficient_attention:
self.pipe_sr.enable_xformers_memory_efficient_attention()
except Exception as e:
print(e)
device = torch.device("cuda")
model_path = model + '/RealESRGAN_x2plus.pth'
self.upsampler = LazyRealESRGAN(device=device, scale=2)
self.upsampler.model_path = model_path
@staticmethod
def blend_h(a, b, blend_extent):
a = np.array(a)
b = np.array(b)
blend_extent = min(a.shape[1], b.shape[1], blend_extent)
for x in range(blend_extent):
b[:, x, :] = a[:, -blend_extent
+ x, :] * (1 - x / blend_extent) + b[:, x, :] * (
x / blend_extent)
return b
def __call__(self, inputs: Dict[str, Any],
**forward_params) -> Dict[str, Any]:
if not isinstance(inputs, dict):
raise ValueError(
f'Expected the input to be a dictionary, but got {type(input)}'
)
num_inference_steps = inputs.get('num_inference_steps', 20)
guidance_scale = inputs.get('guidance_scale', 7.5)
preset_a_prompt = 'photorealistic, trend on artstation, ((best quality)), ((ultra high res))'
add_prompt = inputs.get('add_prompt', preset_a_prompt)
preset_n_prompt = 'persons, complex texture, small objects, sheltered, blur, worst quality, '\
'low quality, zombie, logo, text, watermark, username, monochrome, '\
'complex lighting'
negative_prompt = inputs.get('negative_prompt', preset_n_prompt)
seed = inputs.get('seed', -1)
upscale = inputs.get('upscale', True)
refinement = inputs.get('refinement', True)
guidance_scale_sr_step1 = inputs.get('guidance_scale_sr_step1', 15)
guidance_scale_sr_step2 = inputs.get('guidance_scale_sr_step1', 17)
if 'prompt' in inputs.keys():
prompt = inputs['prompt']
else:
# for demo_service
prompt = forward_params.get('prompt', 'the living room')
print(f'Test with prompt: {prompt}')
if seed == -1:
seed = random.randint(0, 65535)
print(f'global seed: {seed}')
generator = torch.manual_seed(seed)
prompt = '<360panorama>, ' + prompt + ', ' + add_prompt
output_img = self.pipe(
prompt,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
height=512,
width=1024,
guidance_scale=guidance_scale,
generator=generator).images[0]
if not upscale:
print('finished')
else:
print('inputs: upscale=True, running upscaler.')
print('running upscaler step1. Initial super-resolution')
sr_scale = 2.0
output_img = self.pipe_sr(
prompt.replace('<360panorama>, ', ''),
negative_prompt=negative_prompt,
image=output_img.resize(
(int(1536 * sr_scale), int(768 * sr_scale))),
num_inference_steps=7,
generator=generator,
control_image=output_img.resize(
(int(1536 * sr_scale), int(768 * sr_scale))),
strength=0.8,
controlnet_conditioning_scale=1.0,
guidance_scale=guidance_scale_sr_step1,
).images[0]
print('running upscaler step2. Super-resolution with Real-ESRGAN')
output_img = output_img.resize((1536 * 2, 768 * 2))
w = output_img.size[0]
blend_extend = 10
outscale = 2
output_img = np.array(output_img)
output_img = np.concatenate(
[output_img, output_img[:, :blend_extend, :]], axis=1)
output_img = self.upsampler.predict(
output_img)
output_img = self.blend_h(output_img, output_img,
blend_extend * outscale)
output_img = Image.fromarray(output_img[:, :w * outscale, :])
if refinement:
print(
'inputs: refinement=True, running refinement. This is a bit time-consuming.'
)
sr_scale = 4
output_img = self.pipe_sr(
prompt.replace('<360panorama>, ', ''),
negative_prompt=negative_prompt,
image=output_img.resize(
(int(1536 * sr_scale), int(768 * sr_scale))),
num_inference_steps=7,
generator=generator,
control_image=output_img.resize(
(int(1536 * sr_scale), int(768 * sr_scale))),
strength=0.8,
controlnet_conditioning_scale=1.0,
guidance_scale=guidance_scale_sr_step2,
).images[0]
print('finished')
return output_img
|