Spaces:
Running
on
Zero
Running
on
Zero
gokaygokay
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,162 +1,205 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
import numpy as np
|
3 |
-
import random
|
4 |
-
from diffusers import AuraFlowPipeline
|
5 |
import torch
|
6 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
|
|
8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
-
#torch._inductor.config.conv_1x1_as_mm = True
|
13 |
-
#torch._inductor.config.coordinate_descent_tuning = True
|
14 |
-
#torch._inductor.config.epilogue_fusion = False
|
15 |
-
#torch._inductor.config.coordinate_descent_check_all_directions = True
|
16 |
-
|
17 |
pipe = AuraFlowPipeline.from_pretrained(
|
18 |
-
|
19 |
torch_dtype=torch.float16
|
20 |
-
).to(
|
21 |
|
22 |
-
#
|
23 |
-
|
|
|
24 |
|
25 |
-
#
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
MAX_SEED = np.iinfo(np.int32).max
|
29 |
MAX_IMAGE_SIZE = 1024
|
30 |
|
31 |
-
|
32 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
|
|
34 |
if randomize_seed:
|
35 |
seed = random.randint(0, MAX_SEED)
|
36 |
-
|
37 |
-
generator = torch.Generator().manual_seed(seed)
|
38 |
|
39 |
image = pipe(
|
40 |
-
prompt
|
41 |
-
negative_prompt
|
42 |
-
|
|
|
|
|
43 |
height=height,
|
44 |
-
|
45 |
-
|
46 |
-
generator = generator
|
47 |
-
).images[0]
|
48 |
|
49 |
return image, seed
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
}
|
63 |
"""
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
-
with gr.Blocks(css=
|
|
|
71 |
|
72 |
-
with gr.
|
73 |
-
gr.
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
""")
|
78 |
-
|
79 |
-
with gr.Row():
|
80 |
|
81 |
-
|
82 |
-
label="Prompt"
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
88 |
|
89 |
-
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
seed
|
102 |
-
|
103 |
-
|
104 |
-
maximum=MAX_SEED,
|
105 |
-
step=1,
|
106 |
-
value=0,
|
107 |
-
)
|
108 |
-
|
109 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
110 |
-
|
111 |
-
with gr.Row():
|
112 |
-
|
113 |
-
width = gr.Slider(
|
114 |
-
label="Width",
|
115 |
-
minimum=256,
|
116 |
-
maximum=MAX_IMAGE_SIZE,
|
117 |
-
step=32,
|
118 |
-
value=1024,
|
119 |
-
)
|
120 |
-
|
121 |
-
height = gr.Slider(
|
122 |
-
label="Height",
|
123 |
-
minimum=256,
|
124 |
-
maximum=MAX_IMAGE_SIZE,
|
125 |
-
step=32,
|
126 |
-
value=1024,
|
127 |
-
)
|
128 |
-
|
129 |
-
with gr.Row():
|
130 |
-
|
131 |
-
guidance_scale = gr.Slider(
|
132 |
-
label="Guidance scale",
|
133 |
-
minimum=0.0,
|
134 |
-
maximum=10.0,
|
135 |
-
step=0.1,
|
136 |
-
value=5.0,
|
137 |
-
)
|
138 |
-
|
139 |
-
num_inference_steps = gr.Slider(
|
140 |
-
label="Number of inference steps",
|
141 |
-
minimum=1,
|
142 |
-
maximum=50,
|
143 |
-
step=1,
|
144 |
-
value=28,
|
145 |
-
)
|
146 |
-
|
147 |
-
gr.Examples(
|
148 |
-
examples = examples,
|
149 |
-
fn = infer,
|
150 |
-
inputs = [prompt],
|
151 |
-
outputs = [result, seed],
|
152 |
-
cache_examples="lazy"
|
153 |
-
)
|
154 |
-
|
155 |
-
gr.on(
|
156 |
-
triggers=[run_button.click, prompt.submit, negative_prompt.submit],
|
157 |
-
fn = infer,
|
158 |
-
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
159 |
-
outputs = [result, seed]
|
160 |
)
|
161 |
|
162 |
-
demo.
|
|
|
1 |
+
import spaces
|
2 |
import gradio as gr
|
|
|
|
|
|
|
3 |
import torch
|
4 |
+
from PIL import Image
|
5 |
+
from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor, pipeline
|
6 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
7 |
+
from diffusers import AuraFlowPipeline
|
8 |
+
import re
|
9 |
+
import random
|
10 |
+
import numpy as np
|
11 |
|
12 |
+
# Initialize models
|
13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
+
dtype = torch.float16
|
15 |
|
16 |
+
# AuraFlow model
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
pipe = AuraFlowPipeline.from_pretrained(
|
18 |
+
"fal/AuraFlow",
|
19 |
torch_dtype=torch.float16
|
20 |
+
).to(device)
|
21 |
|
22 |
+
# VLM Captioner
|
23 |
+
vlm_model = PaliGemmaForConditionalGeneration.from_pretrained("gokaygokay/sd3-long-captioner-v2").to(device).eval()
|
24 |
+
vlm_processor = PaliGemmaProcessor.from_pretrained("gokaygokay/sd3-long-captioner-v2")
|
25 |
|
26 |
+
# Initialize Florence model
|
27 |
+
florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval()
|
28 |
+
florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True)
|
29 |
+
|
30 |
+
# Prompt Enhancer
|
31 |
+
enhancer_medium = pipeline("summarization", model="gokaygokay/Lamini-fal-prompt-enchance", device=device)
|
32 |
+
enhancer_long = pipeline("summarization", model="gokaygokay/Lamini-Prompt-Enchance-Long", device=device)
|
33 |
|
34 |
MAX_SEED = np.iinfo(np.int32).max
|
35 |
MAX_IMAGE_SIZE = 1024
|
36 |
|
37 |
+
# Florence caption function
|
38 |
+
def florence_caption(image):
|
39 |
+
# Convert image to PIL if it's not already
|
40 |
+
if not isinstance(image, Image.Image):
|
41 |
+
image = Image.fromarray(image)
|
42 |
+
|
43 |
+
inputs = florence_processor(text="<MORE_DETAILED_CAPTION>", images=image, return_tensors="pt").to(device)
|
44 |
+
generated_ids = florence_model.generate(
|
45 |
+
input_ids=inputs["input_ids"],
|
46 |
+
pixel_values=inputs["pixel_values"],
|
47 |
+
max_new_tokens=1024,
|
48 |
+
early_stopping=False,
|
49 |
+
do_sample=False,
|
50 |
+
num_beams=3,
|
51 |
+
)
|
52 |
+
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
53 |
+
parsed_answer = florence_processor.post_process_generation(
|
54 |
+
generated_text,
|
55 |
+
task="<MORE_DETAILED_CAPTION>",
|
56 |
+
image_size=(image.width, image.height)
|
57 |
+
)
|
58 |
+
return parsed_answer["<MORE_DETAILED_CAPTION>"]
|
59 |
+
|
60 |
+
# VLM Captioner function
|
61 |
+
def create_captions_rich(image):
|
62 |
+
prompt = "caption en"
|
63 |
+
model_inputs = vlm_processor(text=prompt, images=image, return_tensors="pt").to(device)
|
64 |
+
input_len = model_inputs["input_ids"].shape[-1]
|
65 |
+
|
66 |
+
with torch.inference_mode():
|
67 |
+
generation = vlm_model.generate(**model_inputs, repetition_penalty=1.10, max_new_tokens=256, do_sample=False)
|
68 |
+
generation = generation[0][input_len:]
|
69 |
+
decoded = vlm_processor.decode(generation, skip_special_tokens=True)
|
70 |
+
|
71 |
+
return modify_caption(decoded)
|
72 |
+
|
73 |
+
# Helper function for caption modification
|
74 |
+
def modify_caption(caption: str) -> str:
|
75 |
+
prefix_substrings = [
|
76 |
+
('captured from ', ''),
|
77 |
+
('captured at ', '')
|
78 |
+
]
|
79 |
+
pattern = '|'.join([re.escape(opening) for opening, _ in prefix_substrings])
|
80 |
+
replacers = {opening: replacer for opening, replacer in prefix_substrings}
|
81 |
+
|
82 |
+
def replace_fn(match):
|
83 |
+
return replacers[match.group(0)]
|
84 |
+
|
85 |
+
return re.sub(pattern, replace_fn, caption, count=1, flags=re.IGNORECASE)
|
86 |
+
|
87 |
+
# Prompt Enhancer function
|
88 |
+
def enhance_prompt(input_prompt, model_choice):
|
89 |
+
if model_choice == "Medium":
|
90 |
+
result = enhancer_medium("Enhance the description: " + input_prompt)
|
91 |
+
enhanced_text = result[0]['summary_text']
|
92 |
+
|
93 |
+
else: # Long
|
94 |
+
result = enhancer_long("Enhance the description: " + input_prompt)
|
95 |
+
enhanced_text = result[0]['summary_text']
|
96 |
+
|
97 |
+
return enhanced_text
|
98 |
|
99 |
+
def generate_image(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
100 |
if randomize_seed:
|
101 |
seed = random.randint(0, MAX_SEED)
|
102 |
+
|
103 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
104 |
|
105 |
image = pipe(
|
106 |
+
prompt=prompt,
|
107 |
+
negative_prompt=negative_prompt,
|
108 |
+
guidance_scale=guidance_scale,
|
109 |
+
num_inference_steps=num_inference_steps,
|
110 |
+
width=width,
|
111 |
height=height,
|
112 |
+
generator=generator
|
113 |
+
).images[0]
|
|
|
|
|
114 |
|
115 |
return image, seed
|
116 |
|
117 |
+
@spaces.GPU(duration=200)
|
118 |
+
def process_workflow(image, text_prompt, vlm_model_choice, use_enhancer, model_choice, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
119 |
+
if image is not None:
|
120 |
+
# Convert image to PIL if it's not already
|
121 |
+
if not isinstance(image, Image.Image):
|
122 |
+
image = Image.fromarray(image)
|
123 |
+
|
124 |
+
if vlm_model_choice == "Long Captioner":
|
125 |
+
prompt = create_captions_rich(image)
|
126 |
+
else: # Florence
|
127 |
+
prompt = florence_caption(image)
|
128 |
+
else:
|
129 |
+
prompt = text_prompt
|
130 |
+
|
131 |
+
if use_enhancer:
|
132 |
+
prompt = enhance_prompt(prompt, model_choice)
|
133 |
+
|
134 |
+
generated_image, used_seed = generate_image(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps)
|
135 |
+
|
136 |
+
return generated_image, prompt, used_seed
|
137 |
+
|
138 |
+
custom_css = """
|
139 |
+
.input-group, .output-group {
|
140 |
+
border: 1px solid #e0e0e0;
|
141 |
+
border-radius: 10px;
|
142 |
+
padding: 20px;
|
143 |
+
margin-bottom: 20px;
|
144 |
+
background-color: #f9f9f9;
|
145 |
+
}
|
146 |
+
.submit-btn {
|
147 |
+
background-color: #2980b9 !important;
|
148 |
+
color: white !important;
|
149 |
+
}
|
150 |
+
.submit-btn:hover {
|
151 |
+
background-color: #3498db !important;
|
152 |
}
|
153 |
"""
|
154 |
|
155 |
+
title = """<h1 align="center">AuraFlow with VLM Captioner and Prompt Enhancer</h1>
|
156 |
+
<p><center>
|
157 |
+
<a href="https://huggingface.co/fal/AuraFlow" target="_blank">[AuraFlow Model]</a>
|
158 |
+
<a href="https://huggingface.co/spaces/multimodalart/AuraFlow" target="_blank">[Original Space]</a>
|
159 |
+
<a href="https://huggingface.co/microsoft/Florence-2-base" target="_blank">[Florence-2 Model]</a>
|
160 |
+
<a href="https://huggingface.co/gokaygokay/sd3-long-captioner-v2" target="_blank">[Long Captioner Model]</a>
|
161 |
+
<a href="https://huggingface.co/gokaygokay/Lamini-Prompt-Enchance-Long" target="_blank">[Prompt Enhancer Long]</a>
|
162 |
+
<a href="https://huggingface.co/gokaygokay/Lamini-fal-prompt-enchance" target="_blank">[Prompt Enhancer Medium]</a>
|
163 |
+
<p align="center">Create long prompts from images or enhance your short prompts with prompt enhancer</p>
|
164 |
+
</center></p>
|
165 |
+
"""
|
166 |
|
167 |
+
with gr.Blocks(css=custom_css, theme=gr.themes.Soft(primary_hue="blue", secondary_hue="gray")) as demo:
|
168 |
+
gr.HTML(title)
|
169 |
|
170 |
+
with gr.Row():
|
171 |
+
with gr.Column(scale=1):
|
172 |
+
with gr.Group(elem_classes="input-group"):
|
173 |
+
input_image = gr.Image(label="Input Image (VLM Captioner)")
|
174 |
+
vlm_model_choice = gr.Radio(["Florence-2", "Long Captioner"], label="VLM Model", value="Florence-2")
|
|
|
|
|
|
|
175 |
|
176 |
+
with gr.Accordion("Advanced Settings", open=False):
|
177 |
+
text_prompt = gr.Textbox(label="Text Prompt (optional, used if no image is uploaded)")
|
178 |
+
use_enhancer = gr.Checkbox(label="Use Prompt Enhancer", value=False)
|
179 |
+
model_choice = gr.Radio(["Medium", "Long"], label="Enhancer Model", value="Long")
|
180 |
+
negative_prompt = gr.Textbox(label="Negative Prompt")
|
181 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
182 |
+
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
183 |
+
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
|
184 |
+
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
|
185 |
+
guidance_scale = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=10.0, step=0.1, value=5.0)
|
186 |
+
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=28)
|
187 |
|
188 |
+
generate_btn = gr.Button("Generate Image", elem_classes="submit-btn")
|
189 |
|
190 |
+
with gr.Column(scale=1):
|
191 |
+
with gr.Group(elem_classes="output-group"):
|
192 |
+
output_image = gr.Image(label="Result", elem_id="gallery", show_label=False)
|
193 |
+
final_prompt = gr.Textbox(label="Final Prompt Used")
|
194 |
+
used_seed = gr.Number(label="Seed Used")
|
195 |
+
|
196 |
+
generate_btn.click(
|
197 |
+
fn=process_workflow,
|
198 |
+
inputs=[
|
199 |
+
input_image, text_prompt, vlm_model_choice, use_enhancer, model_choice,
|
200 |
+
negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps
|
201 |
+
],
|
202 |
+
outputs=[output_image, final_prompt, used_seed]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
)
|
204 |
|
205 |
+
demo.launch(debug=True)
|