Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import os | |
import torch | |
import random | |
from huggingface_hub import snapshot_download | |
from diffusers import StableDiffusionXLPipeline, AutoencoderKL | |
from diffusers import ( | |
EulerAncestralDiscreteScheduler, | |
DPMSolverMultistepScheduler, | |
DPMSolverSDEScheduler, | |
HeunDiscreteScheduler, | |
DDIMScheduler, | |
LMSDiscreteScheduler, | |
PNDMScheduler, | |
UniPCMultistepScheduler, | |
) | |
from diffusers.models.attention_processor import AttnProcessor2_0 | |
import gradio as gr | |
from PIL import Image | |
import numpy as np | |
from transformers import AutoProcessor, AutoModelForCausalLM, pipeline | |
import requests | |
from RealESRGAN import RealESRGAN | |
from unittest.mock import patch | |
from typing import Union | |
from transformers.dynamic_module_utils import get_imports | |
def fixed_get_imports(filename): | |
"""Work around for https://huggingface.co/microsoft/phi-1_5/discussions/72.""" | |
if not str(filename).endswith("/modeling_florence2.py"): | |
return get_imports(filename) | |
imports = get_imports(filename) | |
imports.remove("flash_attn") | |
return imports | |
def download_file(url, folder_path, filename): | |
if not os.path.exists(folder_path): | |
os.makedirs(folder_path) | |
file_path = os.path.join(folder_path, filename) | |
if os.path.isfile(file_path): | |
print(f"File already exists: {file_path}") | |
else: | |
response = requests.get(url, stream=True) | |
if response.status_code == 200: | |
with open(file_path, 'wb') as file: | |
for chunk in response.iter_content(chunk_size=1024): | |
file.write(chunk) | |
print(f"File successfully downloaded and saved: {file_path}") | |
else: | |
print(f"Error downloading the file. Status code: {response.status_code}") | |
# Download ESRGAN models | |
download_file("https://huggingface.co/ai-forever/Real-ESRGAN/resolve/main/RealESRGAN_x2.pth?download=true", "models/upscalers/", "RealESRGAN_x2.pth") | |
download_file("https://huggingface.co/ai-forever/Real-ESRGAN/resolve/main/RealESRGAN_x4.pth?download=true", "models/upscalers/", "RealESRGAN_x4.pth") | |
# Download the model files | |
ckpt_dir_pony = snapshot_download(repo_id="Niggendar/autismmixSDXL_autismmixPony") | |
ckpt_dir_cyber = snapshot_download(repo_id="John6666/t-ponynai3-v65-sdxl") | |
ckpt_dir_stallion = snapshot_download(repo_id="John6666/prefect-pony-xl-v4-sdxl") | |
# Load the models | |
vae_pony = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir_pony, "vae"), torch_dtype=torch.float16) | |
vae_cyber = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir_cyber, "vae"), torch_dtype=torch.float16) | |
vae_stallion = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir_stallion, "vae"), torch_dtype=torch.float16) | |
pipe_pony = StableDiffusionXLPipeline.from_pretrained( | |
ckpt_dir_pony, | |
vae=vae_pony, | |
torch_dtype=torch.float16, | |
use_safetensors=True, | |
) | |
pipe_cyber = StableDiffusionXLPipeline.from_pretrained( | |
ckpt_dir_cyber, | |
vae=vae_cyber, | |
torch_dtype=torch.float16, | |
use_safetensors=True, | |
) | |
pipe_stallion = StableDiffusionXLPipeline.from_pretrained( | |
ckpt_dir_stallion, | |
vae=vae_stallion, | |
torch_dtype=torch.float16, | |
use_safetensors=True, | |
) | |
pipe_pony = pipe_pony.to("cuda") | |
pipe_cyber = pipe_cyber.to("cuda") | |
pipe_stallion = pipe_stallion.to("cuda") | |
pipe_pony.unet.set_attn_processor(AttnProcessor2_0()) | |
pipe_cyber.unet.set_attn_processor(AttnProcessor2_0()) | |
pipe_stallion.unet.set_attn_processor(AttnProcessor2_0()) | |
# Define samplers | |
samplers = { | |
"Euler a": EulerAncestralDiscreteScheduler.from_config(pipe_pony.scheduler.config), | |
"DPM++ SDE Karras": DPMSolverSDEScheduler.from_config(pipe_pony.scheduler.config, use_karras_sigmas=True), | |
"Heun": HeunDiscreteScheduler.from_config(pipe_pony.scheduler.config), | |
# New samplers | |
"DPM++ 2M SDE Karras": DPMSolverMultistepScheduler.from_config(pipe_pony.scheduler.config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++"), | |
"DPM++ 2M": DPMSolverMultistepScheduler.from_config(pipe_pony.scheduler.config), | |
"DDIM": DDIMScheduler.from_config(pipe_pony.scheduler.config), | |
"LMS": LMSDiscreteScheduler.from_config(pipe_pony.scheduler.config), | |
"PNDM": PNDMScheduler.from_config(pipe_pony.scheduler.config), | |
"UniPC": UniPCMultistepScheduler.from_config(pipe_pony.scheduler.config), | |
} | |
DEFAULT_POSITIVE_PREFIX = "Score_9 score_8_up score_7_up BREAK" | |
DEFAULT_POSITIVE_SUFFIX = "(masterpiece) very_aesthetic hi_res absurd_res superabsurd_res" | |
DEFAULT_NEGATIVE_PREFIX = "Score_1 score_2 score _3 text low_res" | |
DEFAULT_NEGATIVE_SUFFIX = "Nsfw oversaturated crappy_art low_quality blurry bad_anatomy extra_digits fewer_digits simple_background very_displeasing watermark signature" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval() | |
florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True) | |
# Prompt Enhancer | |
enhancer_medium = pipeline("summarization", model="gokaygokay/Lamini-Prompt-Enchance", device=device) | |
enhancer_long = pipeline("summarization", model="gokaygokay/Lamini-Prompt-Enchance-Long", device=device) | |
class LazyRealESRGAN: | |
def __init__(self, device, scale): | |
self.device = device | |
self.scale = scale | |
self.model = None | |
def load_model(self): | |
if self.model is None: | |
self.model = RealESRGAN(self.device, scale=self.scale) | |
self.model.load_weights(f'models/upscalers/RealESRGAN_x{self.scale}.pth', download=False) | |
def predict(self, img): | |
self.load_model() | |
return self.model.predict(img) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
lazy_realesrgan_x2 = LazyRealESRGAN(device, scale=2) | |
lazy_realesrgan_x4 = LazyRealESRGAN(device, scale=4) | |
# Florence caption function | |
def florence_caption(image): | |
# Convert image to PIL if it's not already | |
if not isinstance(image, Image.Image): | |
image = Image.fromarray(image) | |
inputs = florence_processor(text="<DETAILED_CAPTION>", images=image, return_tensors="pt").to(device) | |
generated_ids = florence_model.generate( | |
input_ids=inputs["input_ids"], | |
pixel_values=inputs["pixel_values"], | |
max_new_tokens=1024, | |
early_stopping=False, | |
do_sample=False, | |
num_beams=3, | |
) | |
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0] | |
parsed_answer = florence_processor.post_process_generation( | |
generated_text, | |
task="<DETAILED_CAPTION>", | |
image_size=(image.width, image.height) | |
) | |
return parsed_answer["<DETAILED_CAPTION>"] | |
# Prompt Enhancer function | |
def enhance_prompt(input_prompt, model_choice): | |
if model_choice == "Medium": | |
result = enhancer_medium("Enhance the description: " + input_prompt) | |
enhanced_text = result[0]['summary_text'] | |
else: # Long | |
result = enhancer_long("Enhance the description: " + input_prompt) | |
enhanced_text = result[0]['summary_text'] | |
return enhanced_text | |
def upscale_image(image, scale): | |
# Ensure image is a PIL Image object | |
if not isinstance(image, Image.Image): | |
if isinstance(image, np.ndarray): | |
image = Image.fromarray(image) | |
else: | |
raise ValueError("Input must be a PIL Image or a numpy array") | |
if scale == 2: | |
return lazy_realesrgan_x2.predict(image) | |
elif scale == 4: | |
return lazy_realesrgan_x4.predict(image) | |
else: | |
return image | |
def generate_image(model_choice, additional_positive_prompt, additional_negative_prompt, height, width, num_inference_steps, | |
guidance_scale, num_images_per_prompt, use_random_seed, seed, sampler, clip_skip, | |
use_florence2, use_medium_enhancer, use_long_enhancer, | |
use_positive_prefix, use_positive_suffix, use_negative_prefix, use_negative_suffix, | |
use_upscaler, upscale_factor, | |
input_image=None, progress=gr.Progress(track_tqdm=True)): | |
# Select the appropriate pipe based on the model choice | |
if model_choice == "AutismMix SDXL": | |
pipe = pipe_pony | |
elif model_choice == "T-ponynai3": | |
pipe = pipe_cyber | |
else: # "Stallion Dreams Pony Realistic v1" | |
pipe = pipe_stallion | |
if use_random_seed: | |
seed = random.randint(0, 2**32 - 1) | |
else: | |
seed = int(seed) # Ensure seed is an integer | |
# Set the scheduler based on the selected sampler | |
pipe.scheduler = samplers[sampler] | |
# Set clip skip | |
pipe.text_encoder.config.num_hidden_layers -= (clip_skip - 1) | |
# Start with the default positive prompt prefix if enabled | |
full_positive_prompt = DEFAULT_POSITIVE_PREFIX + ", " if use_positive_prefix else "" | |
# Add Florence-2 caption if enabled and image is provided | |
if use_florence2 and input_image is not None: | |
florence2_caption = florence_caption(input_image) | |
florence2_caption = florence2_caption.lower().replace('.', ',') | |
additional_positive_prompt = f"{florence2_caption}, {additional_positive_prompt}" if additional_positive_prompt else florence2_caption | |
# Enhance only the additional positive prompt if enhancers are enabled | |
if additional_positive_prompt: | |
enhanced_prompt = additional_positive_prompt | |
if use_medium_enhancer: | |
medium_enhanced = enhance_prompt(enhanced_prompt, "Medium") | |
medium_enhanced = medium_enhanced.lower().replace('.', ',') | |
enhanced_prompt = f"{enhanced_prompt}, {medium_enhanced}" | |
if use_long_enhancer: | |
long_enhanced = enhance_prompt(enhanced_prompt, "Long") | |
long_enhanced = long_enhanced.lower().replace('.', ',') | |
enhanced_prompt = f"{enhanced_prompt}, {long_enhanced}" | |
full_positive_prompt += enhanced_prompt | |
# Add the default positive suffix if enabled | |
if use_positive_suffix: | |
full_positive_prompt += f", {DEFAULT_POSITIVE_SUFFIX}" | |
# Combine default negative prompt with additional negative prompt | |
full_negative_prompt = "" | |
if use_negative_prefix: | |
full_negative_prompt += f"{DEFAULT_NEGATIVE_PREFIX}, " | |
full_negative_prompt += additional_negative_prompt if additional_negative_prompt else "" | |
if use_negative_suffix: | |
full_negative_prompt += f", {DEFAULT_NEGATIVE_SUFFIX}" | |
try: | |
images = pipe( | |
prompt=full_positive_prompt, | |
negative_prompt=full_negative_prompt, | |
height=height, | |
width=width, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
num_images_per_prompt=num_images_per_prompt, | |
generator=torch.Generator(pipe.device).manual_seed(seed) | |
).images | |
if use_upscaler: | |
print("Upscaling images") | |
upscaled_images = [] | |
for i, img in enumerate(images): | |
print(f"Upscaling image {i+1}") | |
if not isinstance(img, Image.Image): | |
print(f"Converting image {i+1} to PIL Image") | |
img = Image.fromarray(np.uint8(img)) | |
upscaled_img = upscale_image(img, upscale_factor) | |
upscaled_images.append(upscaled_img) | |
images = upscaled_images | |
print("Returning results") | |
return images, seed, full_positive_prompt, full_negative_prompt | |
except Exception as e: | |
print(f"Error during image generation: {str(e)}") | |
import traceback | |
traceback.print_exc() | |
return None, seed, full_positive_prompt, full_negative_prompt | |
# Gradio interface | |
with gr.Blocks(theme='bethecloud/storj_theme') as demo: | |
gr.HTML(""" | |
<h1 align="center">AutismMix SDXL / T-ponynai3 / Prefect Pony XL</h1> | |
<p align="center"> | |
<a href="https://huggingface.co/Niggendar/autismmixSDXL_autismmixPony/" target="_blank">[AutismMix SDXL]</a> | |
<a href="https://huggingface.co/John6666/t-ponynai3-v61-sdxl" target="_blank">[T-ponynai3]</a> | |
<a href="https://huggingface.co/John6666/prefect-pony-xl-v3-sdxl" target="_blank">[Prefect Pony XL]</a><br> | |
<a href="https://civitai.com/models/288584/autismmix-sdxl" target="_blank">[AutismMix SDXL civitai]</a> | |
<a href="https://civitai.com/models/317902/t-ponynai3" target="_blank">[T-ponynai3 civitai]</a> | |
<a href="https://civitai.com/models/439889/prefect-pony-xl" target="_blank">[Prefect Pony XL civitai]</a> | |
<a href="https://huggingface.co/microsoft/Florence-2-base" target="_blank">[Florence-2 Model]</a> | |
<a href="https://huggingface.co/gokaygokay/Lamini-Prompt-Enchance-Long" target="_blank">[Prompt Enhancer Long]</a> | |
<a href="https://huggingface.co/gokaygokay/Lamini-Prompt-Enchance" target="_blank">[Prompt Enhancer Medium]</a> | |
</p> | |
""") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
model_choice = gr.Dropdown( | |
["AutismMix SDXL", "T-ponynai3", "Prefect Pony XL"], | |
label="Model Choice", | |
value="AutismMix SDXL") | |
positive_prompt = gr.Textbox(label="Positive Prompt", placeholder="Add your positive prompt here") | |
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Add your negative prompt here") | |
with gr.Accordion("Advanced settings", open=False): | |
height = gr.Slider(512, 2048, 1024, step=64, label="Height") | |
width = gr.Slider(512, 2048, 1024, step=64, label="Width") | |
num_inference_steps = gr.Slider(20, 100, 30, step=1, label="Number of Inference Steps") | |
guidance_scale = gr.Slider(1, 20, 6, step=0.1, label="Guidance Scale") | |
num_images_per_prompt = gr.Slider(1, 4, 1, step=1, label="Number of images per prompt") | |
use_random_seed = gr.Checkbox(label="Use Random Seed", value=True) | |
seed = gr.Number(label="Seed", value=0, precision=0) | |
sampler = gr.Dropdown(label="Sampler", choices=list(samplers.keys()), value="Euler a") | |
clip_skip = gr.Slider(1, 4, 2, step=1, label="Clip skip") | |
with gr.Accordion("Captioner and Enhancers", open=False): | |
input_image = gr.Image(label="Input Image for Florence-2 Captioner") | |
use_florence2 = gr.Checkbox(label="Use Florence-2 Captioner", value=False) | |
use_medium_enhancer = gr.Checkbox(label="Use Medium Prompt Enhancer", value=False) | |
use_long_enhancer = gr.Checkbox(label="Use Long Prompt Enhancer", value=False) | |
with gr.Accordion("Upscaler Settings", open=False): | |
use_upscaler = gr.Checkbox(label="Use Upscaler", value=False) | |
upscale_factor = gr.Radio(label="Upscale Factor", choices=[2, 4], value=2) | |
generate_btn = gr.Button("Generate Image") | |
with gr.Accordion("Prefix and Suffix Settings", open=True): | |
use_positive_prefix = gr.Checkbox( | |
label="Use Positive Prefix", | |
value=True, | |
info=f"Prefix: {DEFAULT_POSITIVE_PREFIX}" | |
) | |
use_positive_suffix = gr.Checkbox( | |
label="Use Positive Suffix", | |
value=True, | |
info=f"Suffix: {DEFAULT_POSITIVE_SUFFIX}" | |
) | |
use_negative_prefix = gr.Checkbox( | |
label="Use Negative Prefix", | |
value=True, | |
info=f"Prefix: {DEFAULT_NEGATIVE_PREFIX}" | |
) | |
use_negative_suffix = gr.Checkbox( | |
label="Use Negative Suffix", | |
value=True, | |
info=f"Suffix: {DEFAULT_NEGATIVE_SUFFIX}" | |
) | |
with gr.Column(scale=1): | |
output_gallery = gr.Gallery(label="Result", elem_id="gallery", show_label=False) | |
seed_used = gr.Number(label="Seed Used") | |
full_positive_prompt_used = gr.Textbox(label="Full Positive Prompt Used") | |
full_negative_prompt_used = gr.Textbox(label="Full Negative Prompt Used") | |
generate_btn.click( | |
fn=generate_image, | |
inputs=[ | |
model_choice, # Add this new input | |
positive_prompt, negative_prompt, height, width, num_inference_steps, | |
guidance_scale, num_images_per_prompt, use_random_seed, seed, sampler, | |
clip_skip, use_florence2, use_medium_enhancer, use_long_enhancer, | |
use_positive_prefix, use_positive_suffix, use_negative_prefix, use_negative_suffix, | |
use_upscaler, upscale_factor, | |
input_image | |
], | |
outputs=[output_gallery, seed_used, full_positive_prompt_used, full_negative_prompt_used] | |
) | |
demo.launch(debug=True) |