File size: 9,978 Bytes
975088e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9121e4
975088e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a09d97
975088e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a09d97
975088e
 
 
 
 
 
 
6a09d97
 
975088e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a09d97
975088e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63a438b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import os
import random
from typing import List, Tuple
import spaces

import gradio as gr
import lpips
import numpy as np
import pandas as pd
import torch
import torchvision.transforms as transforms
from diffusers import StableDiffusionInpaintPipeline
from diffusers.utils import load_image
from PIL import Image, ImageOps

# Constants
TARGET_SIZE = (512, 512)
DEVICE = torch.device("cuda")
LPIPS_MODELS = ['alex', 'vgg', 'squeeze']
MASK_SIZES = {"64x64": 64, "128x128": 128, "256x256": 256}
DEFAULT_MASK_SIZE = "256x256"
MIN_ITERATIONS = 2
MAX_ITERATIONS = 5
DEFAULT_ITERATIONS = 2

# HTML Content
TITLE = """
<h1 style='text-align: center; font-size: 3.2em; margin-bottom: 0.5em; font-family: Arial, sans-serif; margin: 20px;'>
How Stable is Stable Diffusion under Recursive InPainting (RIP)?🧟
</h1>
"""

AUTHORS = """
<body>
<div align="center"; style="font-size: 1.4em; margin-bottom: 0.5em;">
    Javier Conde<sup>1</sup>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
    Miguel González<sup>1</sup>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
    Gonzalo Martínez<sup>2</sup>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
    Fernando Moral<sup>3</sup>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
    Elena Merino-Gómez<sup>4</sup>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
    Pedro Reviriego<sup>1</sup>
</div>
<div align="center"; style="font-size: 1.3em; font-style: italic;">
    <sup>1</sup>ETSI de Telecomunicación, Universidad Politécnica de Madrid, <sup>2</sup>Universidad Carlos III de Madrid, <sup>3</sup>Universidad Antonio de Nebrija, <sup>4</sup>Universidad de Valladolid
</div>
</body>
"""

BUTTONS = """
<head>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0-beta3/css/all.min.css">
<style>
.button-container {
    display: flex;
    justify-content: center;
    gap: 10px;
    margin-top: 10px;
}
.button-container a {
    display: inline-flex;
    align-items: center;
    padding: 10px 20px;
    border-radius: 30px;
    border: 1px solid #ccc;
    text-decoration: none;
    color: #333 !important;
    font-size: 16px;
    text-decoration: none !important;
}
.button-container a i {
    margin-right: 8px;
}
</style>
</head>
<div class="button-container">
<a href="https://arxiv.org/abs/2407.09549" class="btn btn-outline-primary">
    <i class="fa-solid fa-file-pdf"></i> Paper
</a>
<a href="https://zenodo.org/records/11574941" class="btn btn-outline-secondary">
    <i class="fa-regular fa-folder-open"></i> Zenodo
</a>
</div>
<center><img src="/file=static/greco_example.png" width="800" style="margin-top: 20px; border-radius: 15px;"></center>
"""

DESCRIPTION = """
# 🌟 Official Demo: GenAI Evaluation KDD2024 🌟

Welcome to our official demo for our [research paper](https://arxiv.org/abs/2407.09549) presented at the KDD conference workshop on [Evaluation and Trustworthiness of Generative AI Models](https://genai-evaluation-kdd2024.github.io/genai-evalution-kdd2024/).

This demo shows the effects of recursively applying inpainting with a random mask to an image. A mask is applied at each iteration to remove a random part of the image and subsequently, inpainting is used to reconstruct the image. As iterations progress, the image can change significantly. You can see the effects of two iterations on "The Nobleman with his Hand on his Chest" by El Greco. Now is your turn, play with images, mask sizes, and iterations to see the effects of recursive inpainting!

## 🚀 How to Use

1. 📤 Upload an image or choose from our examples from the [WikiArt dataset](https://huggingface.co/datasets/huggan/wikiart) used in our paper.
2. 🎭 Select the mask size for your image.
3. 🔄 Choose the number of iterations (more iterations = longer processing time).
4. 🖱️ Click "Submit" and wait for the results!

## 📊 Results

You'll see the resulting images in the gallery on the right, along with the [LPIPS (Learned Perceptual Image Patch Similarity)](https://github.com/richzhang/PerceptualSimilarity) metric results for each image.
"""

ARTICLE = """
## **🎨✨To cite our work**

```bibtex
@misc{conde2024stablestablediffusionrecursive,
      title={How Stable is Stable Diffusion under Recursive InPainting (RIP)?}, 
      author={Javier Conde and Miguel González and Gonzalo Martínez and Fernando Moral and Elena Merino-Gómez and Pedro Reviriego},
      year={2024},
      eprint={2407.09549},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2407.09549}, 
}
```
"""

CUSTOM_CSS = """
    #centered {
        display: flex;
        justify-content: center;
        width: 60%;
        margin: 0 auto;
    }
"""

@spaces.GPU(duration=180)
def lpips_distance(img1: Image.Image, img2: Image.Image) -> Tuple[float, float, float]:
    def preprocess(img: Image.Image) -> torch.Tensor:
        if isinstance(img, torch.Tensor):
            return img.float() if img.dim() == 3 else img.unsqueeze(0).float()
        return transforms.ToTensor()(img).unsqueeze(0)

    tensor_img1, tensor_img2 = map(preprocess, (img1, img2))
    resize = transforms.Resize(TARGET_SIZE)
    tensor_img1, tensor_img2 = map(lambda x: resize(x).to(DEVICE), (tensor_img1, tensor_img2))

    loss_fns = {model: lpips.LPIPS(net=model, verbose=False).to(DEVICE) for model in LPIPS_MODELS}

    with torch.no_grad():
        distances = [loss_fns[model](tensor_img1, tensor_img2).item() for model in LPIPS_MODELS]

    return tuple(distances)

def create_square_mask(image: Image.Image, square_size: int = 256) -> Image.Image:
    img_array = np.array(image)
    height, width = img_array.shape[:2]
    mask = np.zeros((height, width), dtype=np.uint8)
    max_y, max_x = max(0, height - square_size), max(0, width - square_size)
    start_y, start_x = random.randint(0, max_y), random.randint(0, max_x)
    end_y, end_x = min(start_y + square_size, height), min(start_x + square_size, width)
    mask[start_y:end_y, start_x:end_x] = 255
    return Image.fromarray(mask)

def adjust_size(image: Image.Image) -> Tuple[Image.Image, Image.Image, Image.Image]:
    mask_image = Image.new("RGB", image.size, (255, 255, 255))
    nmask_image = Image.new("RGB", image.size, (0, 0, 0))
    new_image = ImageOps.pad(image, TARGET_SIZE, Image.LANCZOS, (255, 255, 255), (0.5, 0.5))
    mask_image = ImageOps.pad(mask_image, TARGET_SIZE, Image.LANCZOS, (100, 100, 100), (0.5, 0.5))
    nmask_image = ImageOps.pad(nmask_image, TARGET_SIZE, Image.LANCZOS, (100, 100, 100), (0.5, 0.5))
    return new_image, mask_image, nmask_image

def execute_experiment(image: Image.Image, iterations: int, mask_size: str) -> Tuple[List[Image.Image], pd.DataFrame]:
    mask_size = MASK_SIZES[mask_size]
    image = adjust_size(load_image(image))[0]
    results = [image]
    lpips_distance_dict = {model: [] for model in LPIPS_MODELS}
    lpips_distance_dict['iteration'] = []

    for iteration in range(iterations):
        results.append(inpaint_image("", results[-1], create_square_mask(results[-1], square_size=mask_size)))
        distances = lpips_distance(results[0], results[-1])
        for model, distance in zip(LPIPS_MODELS, distances):
            lpips_distance_dict[model].append(distance)
        lpips_distance_dict["iteration"].append(iteration + 1)

    lpips_df = pd.DataFrame(lpips_distance_dict)
    lpips_df = lpips_df.melt(id_vars="iteration", var_name="model", value_name="lpips")
    lpips_df["iteration"] = lpips_df["iteration"].astype(str)
    return results, lpips_df

@spaces.GPU(duration=180)
def inpaint_image(prompt: str, image: Image.Image, mask_image: Image.Image) -> Image.Image:
    pipe = StableDiffusionInpaintPipeline.from_pretrained(
        "stabilityai/stable-diffusion-2-inpainting",
        torch_dtype=torch.float16,
    ).to(DEVICE)
    return pipe(prompt=prompt, image=image, mask_image=mask_image).images[0]

def create_gradio_interface():
    with gr.Blocks(css=CUSTOM_CSS, theme=gr.themes.Default(primary_hue="red", secondary_hue="blue")) as demo:
        gr.set_static_paths(paths=["static"])
        gr.Markdown(TITLE)
        gr.Markdown(AUTHORS)
        gr.HTML(BUTTONS)
        gr.Markdown(DESCRIPTION)
        
        with gr.Row():
            with gr.Column():
                files = gr.Image(
                    elem_id="image_upload",
                    type="pil",
                    height=500,
                    sources=["upload", "clipboard"],
                    label="Upload"
                )
                iterations = gr.Slider(MIN_ITERATIONS, MAX_ITERATIONS, value=DEFAULT_ITERATIONS, label="Iterations", step=1)
                mask_size = gr.Radio(list(MASK_SIZES.keys()), value=DEFAULT_MASK_SIZE, label="Mask Size")
                submit = gr.Button("Submit")
            
            with gr.Column():
                gallery = gr.Gallery(label="Generated Images")
                lineplot = gr.LinePlot(
                    label="LPIPS Distance",
                    x="iteration",
                    y="lpips",
                    color="model",
                    overlay_point=True,
                    width=500,
                    height=500,
                )

        submit.click(
            fn=execute_experiment,
            inputs=[files, iterations, mask_size],
            outputs=[gallery, lineplot]
        )

        gr.Examples(
            examples=[
                ["./examples/example_1.jpg"],
                ["./examples/example_2.jpg"],
                ["./examples/example_3.jpeg"],
                ["./examples/example_4.jpg"],
                ["./examples/example_5.jpg"],
                ["./examples/example_6.jpg"],
                ["./examples/example_7.jpg"],
                ["./examples/example_8.jpg"],
            ],
            inputs=[files],
            cache_examples=False,
        )

        gr.Markdown(ARTICLE)

    return demo

if __name__ == "__main__":
    demo = create_gradio_interface()
    demo.launch(allowed_paths=["static"])