Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,32 @@
|
|
1 |
import os
|
2 |
import random
|
3 |
-
|
4 |
import gradio as gr
|
5 |
import PIL.Image
|
|
|
6 |
|
7 |
-
DESCRIPTION = "# SDXL"
|
8 |
|
9 |
MAX_SEED = np.iinfo(np.int32).max
|
10 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
|
11 |
ENABLE_REFINER = os.getenv("ENABLE_REFINER", "1") == "1"
|
12 |
|
13 |
-
|
14 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
15 |
if randomize_seed:
|
16 |
seed = random.randint(0, MAX_SEED)
|
17 |
return seed
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
def generate(
|
20 |
prompt: str,
|
21 |
negative_prompt: str = "",
|
@@ -33,8 +44,27 @@ def generate(
|
|
33 |
num_inference_steps_refiner: int = 25,
|
34 |
apply_refiner: bool = False,
|
35 |
)
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
|
40 |
examples = [
|
|
|
1 |
import os
|
2 |
import random
|
|
|
3 |
import gradio as gr
|
4 |
import PIL.Image
|
5 |
+
from gradio_client import Client
|
6 |
|
7 |
+
DESCRIPTION = "# SDXL Pixelart"
|
8 |
|
9 |
MAX_SEED = np.iinfo(np.int32).max
|
10 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
|
11 |
ENABLE_REFINER = os.getenv("ENABLE_REFINER", "1") == "1"
|
12 |
|
|
|
13 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
14 |
if randomize_seed:
|
15 |
seed = random.randint(0, MAX_SEED)
|
16 |
return seed
|
17 |
|
18 |
+
def pixelate(input_file_path, pixel_size):
|
19 |
+
image = Image.open(input_file_path)
|
20 |
+
image = image.resize(
|
21 |
+
(image.size[0] // pixel_size, image.size[1] // pixel_size),
|
22 |
+
Image.NEAREST
|
23 |
+
)
|
24 |
+
image = image.resize(
|
25 |
+
(image.size[0] * pixel_size, image.size[1] * pixel_size),
|
26 |
+
Image.NEAREST
|
27 |
+
)
|
28 |
+
return image
|
29 |
+
|
30 |
def generate(
|
31 |
prompt: str,
|
32 |
negative_prompt: str = "",
|
|
|
44 |
num_inference_steps_refiner: int = 25,
|
45 |
apply_refiner: bool = False,
|
46 |
)
|
47 |
+
client = Client("hysts/SDXL")
|
48 |
+
result = client.predict(
|
49 |
+
prompt=prompt
|
50 |
+
negative_prompt=negative_prompt,
|
51 |
+
prompt_2=prompt_2,
|
52 |
+
negative_prompt_2=negative_prompt_2,
|
53 |
+
use_negative_prompt=use_negative_prompt,
|
54 |
+
use_prompt_2=use_prompt_2,
|
55 |
+
use_negative_prompt_2=use_negative_prompt_2,
|
56 |
+
seed=seed,
|
57 |
+
width=width,
|
58 |
+
height=height,
|
59 |
+
guidance_scale_base=guidance_scale_base,
|
60 |
+
guidance_scale_refiner=guidance_scale_refiner,
|
61 |
+
num_inference_steps_base=num_inference_steps_base,
|
62 |
+
num_inference_steps_refiner=num_inference_steps_refiner,
|
63 |
+
apply_refiner=apply_refiner,
|
64 |
+
api_name="/run"
|
65 |
+
)
|
66 |
+
image = pixelate(result, 16)
|
67 |
+
return image
|
68 |
|
69 |
|
70 |
examples = [
|