codevlogger2003's picture
Updated app.py
4cb596c
raw
history blame
3.11 kB
import numpy as np
import pandas as pd
from deepface import DeepFace
import streamlit as st
import cv2
import base64
import time
st.set_page_config(layout="wide")
cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
def upload():
image=None
initial_image = st.camera_input('Take a picture')
original_image = initial_image
temp_path = None
if initial_image is not None:
bytes_data = initial_image.getvalue()
image = cv2.imdecode(np.frombuffer(bytes_data, np.uint8), cv2.IMREAD_COLOR)
return image, original_image
def main(options):
if st.checkbox('Take a picture for prediction'):
image, original_image= upload()
if original_image is not None and original_image is not None and st.button('Prediction'): # Check if original_image is not None
st.warning('Wait for few seconds!!')
progress_bar = st.progress(0.0)
status_text = st.empty()
result = DeepFace.analyze(image,detector_backend=options,actions=['age','gender','emotion','race'])
for i in range(100):
progress_bar.progress((i + 1) / 100)
status_text.text(f"Processing {i+1}%")
time.sleep(0.01)
progress_bar.empty()
st.balloons()
gray_frame = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
faces = cascade.detectMultiScale(gray_frame, 1.1, 3)
faces = sorted(faces, key=lambda f: -f[2] * f[3])
if len(faces) > 0:
x,y,w,h=faces[0]
cv2.rectangle(image, (x, y), (x+w, y+h), (4, 29, 255), 2, cv2.LINE_4)
user_selected_items = list(result[0].keys())
if 'age' in user_selected_items:
age_label='Age: '+str(result[0]['age'])
cv2.putText(image, age_label, (x ,y+h+30), cv2.FONT_ITALIC,1 ,(255,255,0), 2)
if 'dominant_gender' in user_selected_items:
gender_label='Gender: '+str(result[0]['dominant_gender'])
cv2.putText(image, gender_label, (x, y+h+70), cv2.FONT_ITALIC,1, (0,255,255), 2)
if 'dominant_emotion' in user_selected_items:
emotion_label='Emotion: '+str(result[0]['dominant_emotion']).title()
cv2.putText(image, emotion_label, (x, y+h+110), cv2.FONT_ITALIC,1 ,(255,0,255), 2)
if 'dominant_race' in user_selected_items:
emotion_label='Race: '+str(result[0]['dominant_race']).title()
cv2.putText(image, emotion_label, (x, y+h+150), cv2.FONT_ITALIC,1 ,(0,0,0), 2)
st.image(image, channels='BGR')
if __name__ == '__main__':
def get_options():
actions = ['opencv','mtcnn','retinaface']
option2 = st.selectbox('Choose the following backend:', actions)
return option2
main(get_options())