Spaces:
Runtime error
Runtime error
import numpy as np | |
import pandas as pd | |
from deepface import DeepFace | |
import streamlit as st | |
import cv2 | |
import base64 | |
import time | |
st.set_page_config(layout="wide") | |
cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') | |
import tempfile | |
import os | |
weights_paths = { | |
'age': '/home/appuser/.deepface/weights/age_model_weights.h5', | |
'gender': '/home/appuser/.deepface/weights/gender_model_weights.h5', | |
'race': '/home/appuser/.deepface/weights/race_model_single_batch.h5', | |
'emotion': '/home/appuser/.deepface/weights/facial_expression_model_weights.h5' | |
} | |
def upload(): | |
image=None | |
initial_image = st.camera_input('Take a picture') | |
original_image = initial_image | |
temp_path = None | |
if initial_image is not None: | |
bytes_data = initial_image.getvalue() | |
image = cv2.imdecode(np.frombuffer(bytes_data, np.uint8), cv2.IMREAD_COLOR) | |
return image, original_image | |
def main(options): | |
if st.checkbox('Take a picture for prediction'): | |
image, original_image= upload() | |
if original_image is not None and original_image is not None and st.button('Prediction'): # Check if original_image is not None | |
st.warning('Wait for few seconds!!') | |
progress_bar = st.progress(0.0) | |
status_text = st.empty() | |
result = DeepFace.analyze(image,detector_backend=options,actions=['age','gender','emotion']) | |
for i in range(100): | |
progress_bar.progress((i + 1) / 100) | |
status_text.text(f"Processing {i+1}%") | |
time.sleep(0.01) | |
progress_bar.empty() | |
gray_frame = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
faces = cascade.detectMultiScale(gray_frame, 1.1, 3) | |
for x,y,w,h in faces: | |
cv2.rectangle(image, (x, y), (x+w, y+h), (4, 29, 255), 2, cv2.LINE_4) | |
user_selected_items = list(result[0].keys()) | |
if 'age' in user_selected_items: | |
age_label='Age: '+str(result[0]['age']) | |
cv2.putText(image, age_label, (x ,y+h+30), cv2.FONT_ITALIC,1 ,(255,255,0), 2) | |
if 'dominant_gender' in user_selected_items: | |
gender_label='Gender: '+str(result[0]['dominant_gender']) | |
cv2.putText(image, gender_label, (x, y+h+70), cv2.FONT_ITALIC,1, (0,255,255), 2) | |
if 'dominant_emotion' in user_selected_items: | |
emotion_label='Emotion: '+str(result[0]['dominant_emotion']).title() | |
cv2.putText(image, emotion_label, (x, y+h+110), cv2.FONT_ITALIC,1 ,(255,0,255), 2) | |
st.image(image, channels='BGR') | |
if __name__ == '__main__': | |
def get_options(): | |
actions = ['opencv','mtcnn','retinaface'] | |
option2 = st.selectbox('Choose the following backend:', actions) | |
return option2 | |
main(get_options()) | |