codevlogger2003 commited on
Commit
1266fc8
·
1 Parent(s): 3882dd7

First Commit

Browse files
Files changed (6) hide show
  1. .gitattributes +1 -0
  2. app.py +275 -0
  3. best.pt +3 -0
  4. deep1.mp4 +3 -0
  5. df.jpg +0 -0
  6. requirements.txt +3 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
app.py ADDED
@@ -0,0 +1,275 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pandas as pd
3
+ from ultralytics import YOLO
4
+ import streamlit as st
5
+ import cv2
6
+ import base64
7
+ import time
8
+ import shutil
9
+ import os
10
+ from PIL import Image
11
+ import base64
12
+
13
+
14
+ st.set_page_config(layout="wide",initial_sidebar_state="expanded",
15
+ page_icon='🔎',page_title='Poth-Hole Detector')
16
+
17
+
18
+ def get_video_base64(video_path):
19
+ with open(video_path, "rb") as file:
20
+ video_bytes = file.read()
21
+ base64_encoded = base64.b64encode(video_bytes).decode("utf-8")
22
+ return base64_encoded
23
+
24
+ video_path = "deep1.mp4"
25
+ video_base64 = get_video_base64(video_path)
26
+
27
+ video_html = f"""
28
+ <style>
29
+ #myVideo {{
30
+ position: fixed;
31
+ right: 0;
32
+ bottom: 0;
33
+ min-width: 100%;
34
+ min-height: 100%;
35
+ }}
36
+ .content {{
37
+ position: fixed;
38
+ bottom: 0;
39
+ background: rgba(0, 0, 0, 0.5);
40
+ color: #f1f1f1;
41
+ width: 100%;
42
+ padding: 20px;
43
+ }}
44
+
45
+ </style>
46
+
47
+ <video autoplay loop muted id="myVideo">
48
+ <source type="video/mp4" src="data:video/mp4;base64,{video_base64}">
49
+ </video>
50
+ """
51
+
52
+ st.markdown(video_html, unsafe_allow_html=True)
53
+
54
+ # Define custom style for the glowing text
55
+ glowing_text_style = '''
56
+ <style>
57
+ .glowing-text {
58
+ font-family: 'Arial Black', sans-serif;
59
+ font-size: 48px;
60
+ text-align: center;
61
+ animation: glowing 2s infinite;
62
+ }
63
+
64
+ @keyframes glowing {
65
+ 0% { color: #FF9933; } /* Saffron color */
66
+ 25% { color: #FFFFFF; } /* White color */
67
+ 50% { color: #128807; } /* Green color */
68
+ 75% { color: #0000FF; } /* Blue color */
69
+ 100% { color: #FF9933; } /* Saffron color */
70
+ }
71
+ </style>
72
+ '''
73
+
74
+ # Display the glowing text using st.markdown
75
+ st.markdown(glowing_text_style, unsafe_allow_html=True)
76
+ st.markdown(f'<p class="glowing-text">🕳️ PothHole Detector 🕳️</p>', unsafe_allow_html=True)
77
+
78
+ def upload():
79
+ image=None
80
+ image_filename=None
81
+ initial_image = st.camera_input('Take a picture')
82
+ original_image = initial_image
83
+ temp_path = None
84
+ if initial_image is not None:
85
+ image_filename = f"{int(time.time())}.jpg"
86
+ bytes_data = initial_image.getvalue()
87
+ image = cv2.imdecode(np.frombuffer(bytes_data, np.uint8), cv2.IMREAD_COLOR)
88
+
89
+ return image, original_image,image_filename
90
+
91
+ def process_line(line, image_np,counter):
92
+ # Process a single line from the labels.txt file
93
+ bresults = line.split()
94
+ if len(bresults) >=5:
95
+ names={0:'POTH_HOLE'}
96
+ xc, yc, nw, nh = map(float, bresults[1:5])
97
+ h, w = image_np.shape[0], image_np.shape[1]
98
+
99
+ xc *= w
100
+ yc *= h
101
+ nw *= w
102
+ nh *= h
103
+ top_left = (int(xc - nw / 2), int(yc - nh / 2))
104
+ bottom_right = (int(xc + nw / 2), int(yc + nh / 2))
105
+
106
+ # Draw bounding box
107
+ cv2.rectangle(image_np, top_left, bottom_right, (4, 29, 255), 3, cv2.LINE_4)
108
+
109
+ # Draw label text
110
+ #label = names[int(bresults[0])]
111
+ label = f'{names[int(bresults[0])]}-{counter}'
112
+ text_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 2, 3)[0]
113
+ text_width, text_height = text_size
114
+ text_x = (top_left[0] + bottom_right[0] - text_width) // 2 + 100
115
+ text_y = top_left[1] - 10
116
+ cv2.putText(image_np, label, (text_x, text_y), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2)
117
+
118
+
119
+
120
+ sidebar_option = st.sidebar.radio("Select an option", ("Take picture for prediction", "Upload file"))
121
+
122
+ def main():
123
+
124
+
125
+
126
+
127
+
128
+ if sidebar_option == "Take picture for prediction":
129
+ if st.checkbox('Take a picture for prediction'):
130
+
131
+
132
+ image, original_image,image_filename= upload()
133
+ if original_image is not None and original_image is not None and len(image_filename)!=0 and st.button('Prediction'): # Check if original_image is not None
134
+ st.info('Wait for the results...!')
135
+ #image1=cv2.imread(image)
136
+
137
+ counter=1
138
+ names={0:'POTH_HOLE'
139
+ }
140
+
141
+ model=YOLO('best.pt')
142
+ result = model.predict(image,save=True,save_txt=True)
143
+ txt_files_exist = any(filename.endswith('.txt') for filename in os.listdir('runs/detect/predict/labels'))
144
+ if txt_files_exist:
145
+ lis=open('runs/detect/predict/labels/image0.txt','r').readlines()
146
+ for line in lis:
147
+ process_line(line, image_np,counter)
148
+ counter+=1
149
+ with st.spinner('Wait for the results...!'):
150
+ time.sleep(5)
151
+
152
+ st.image(image,use_column_width=True)
153
+ st.balloons()
154
+
155
+ try:
156
+ if os.path.exists('runs'):
157
+ shutil.rmtree('runs')
158
+ st.session_state.original_image = None # Clear the original_image variable
159
+
160
+ except Exception as e:
161
+ st.error(f"An error occurred: {e}")
162
+ else:
163
+ st.warning('⚠️Please check your image')
164
+ try:
165
+ if os.path.exists('runs'):
166
+ shutil.rmtree('runs')
167
+ st.session_state.original_image = None # Clear the original_image variable
168
+
169
+ except Exception as e:
170
+ st.error(f"An error occurred: {e}")
171
+ elif sidebar_option == "Upload file":
172
+
173
+
174
+ fileimage=st.file_uploader('Upload the file for detection 📁',type=['jpg'])
175
+
176
+ if st.button('Predict'):
177
+ if fileimage is None:
178
+ st.warning('🛎️We are using default image 📷')
179
+ counter=1
180
+ default_image_path='df.jpg'
181
+ pic = Image.open(default_image_path)
182
+ image_np = np.array(pic)
183
+ names={0:'POTH_HOLE'
184
+ }
185
+ mod1=YOLO('best.pt')
186
+ mod1.predict(image_np,save=True,save_txt=True)
187
+ txt_files_exist = any(filename.endswith('.txt') for filename in os.listdir('runs/detect/predict/labels'))
188
+ if txt_files_exist:
189
+ lis=open('runs/detect/predict/labels/image0.txt','r').readlines()
190
+ with st.spinner('Wait for the results...!'):
191
+ time.sleep(5)
192
+
193
+
194
+ for line in lis:
195
+ process_line(line, image_np,counter)
196
+ counter+=1
197
+ col1,col2=st.columns(2)
198
+ with col1:
199
+
200
+ st.info('Original Image!')
201
+ st.image(default_image_path,use_column_width=True)
202
+ with col2:
203
+ st.info('Detected Image!')
204
+ st.image(image_np,use_column_width=True)
205
+ st.balloons()
206
+
207
+ try:
208
+ if os.path.exists('runs'):
209
+ shutil.rmtree('runs')
210
+ st.session_state.original_image = None # Clear the original_image variable
211
+
212
+ except Exception as e:
213
+ st.error(f"An error occurred: {e}")
214
+
215
+ else:
216
+
217
+ if fileimage is not None and not fileimage.name.endswith('.jpg'):
218
+ st.warning('⚠️ Please upload only JPG images.')
219
+ else:
220
+ st.info('Wait for the results...!')
221
+ counter=1
222
+ pic=Image.open(fileimage)
223
+ image_np = np.array(pic)
224
+ names={0:'POTH_HOLE'
225
+ }
226
+ mod1=YOLO('best.pt')
227
+ mod1.predict(image_np,save=True,save_txt=True)
228
+ txt_files_exist = any(filename.endswith('.txt') for filename in os.listdir('runs/detect/predict/labels'))
229
+ if txt_files_exist:
230
+ lis=open('runs/detect/predict/labels/image0.txt','r').readlines()
231
+ with st.spinner('Wait for the results...!'):
232
+ time.sleep(5)
233
+
234
+
235
+ for line in lis:
236
+ process_line(line, image_np,counter)
237
+ counter+=1
238
+ col1,col2=st.columns(2)
239
+ with col1:
240
+
241
+ st.info('Original Image!')
242
+ st.image(fileimage,use_column_width=True)
243
+ with col2:
244
+ st.info('Detected Image!')
245
+ st.image(image_np,use_column_width=True)
246
+ st.balloons()
247
+
248
+ try:
249
+ if os.path.exists('runs'):
250
+ shutil.rmtree('runs')
251
+ st.session_state.original_image = None # Clear the original_image variable
252
+
253
+ except Exception as e:
254
+ st.error(f"An error occurred: {e}")
255
+ else:
256
+ st.warning('⚠️Please check your image')
257
+ try:
258
+ if os.path.exists('runs'):
259
+ shutil.rmtree('runs')
260
+ st.session_state.original_image = None # Clear the original_image variable
261
+
262
+ except Exception as e:
263
+ st.error(f"An error occurred: {e}")
264
+
265
+
266
+
267
+
268
+
269
+
270
+
271
+ if __name__ == '__main__':
272
+
273
+
274
+ main()
275
+
best.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:155fb805da8c4c965f6f20a3c2e695ce8d692a5d1cd712e37e0aad2884a01490
3
+ size 136668926
deep1.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46c04a20444ea67fc7bce121bb50b11b6bee19e88268236f6abda947b741cd7d
3
+ size 61427868
df.jpg ADDED
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ opecv-contrib-python-headless
2
+ ultralytics
3
+ streamlit