Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,6 +7,7 @@ from torchvision.transforms import (
|
|
7 |
ToTensor,
|
8 |
Normalize,
|
9 |
InterpolationMode,
|
|
|
10 |
)
|
11 |
from PIL import Image
|
12 |
import gradio as gr
|
@@ -15,7 +16,7 @@ print("starting...")
|
|
15 |
(ys,) = np.load("embs.npz").values()
|
16 |
print("loaded embs")
|
17 |
model = torch.load(
|
18 |
-
"style-extractor-v0.
|
19 |
map_location="cpu",
|
20 |
)
|
21 |
print("loaded extractor")
|
@@ -27,15 +28,40 @@ d = ys.shape[1]
|
|
27 |
index = faiss.IndexHNSWFlat(d, 32)
|
28 |
print("building index")
|
29 |
index.add(ys)
|
30 |
-
print(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
tf = Compose(
|
32 |
[
|
33 |
-
|
34 |
-
size=336,
|
35 |
-
interpolation=InterpolationMode.BICUBIC,
|
36 |
-
max_size=None,
|
37 |
-
antialias=True,
|
38 |
-
),
|
39 |
ToTensor(),
|
40 |
Normalize(mean=[0.4850, 0.4560, 0.4060], std=[0.2290, 0.2240, 0.2250]),
|
41 |
]
|
@@ -56,6 +82,7 @@ def f(im):
|
|
56 |
D, I = index.search(get_emb(im), n_outputs)
|
57 |
return [f"Distance: {d:.1f}\n![]({urls[i]})" for d, i in zip(D[0], I[0])]
|
58 |
|
|
|
59 |
print("preparing gradio")
|
60 |
with gr.Blocks() as demo:
|
61 |
gr.Markdown(
|
@@ -70,4 +97,4 @@ with gr.Blocks() as demo:
|
|
70 |
outputs.append(gr.Markdown(label=f"#{len(outputs) + 1}"))
|
71 |
btn.click(f, img, outputs)
|
72 |
print("starting gradio")
|
73 |
-
demo.launch()
|
|
|
7 |
ToTensor,
|
8 |
Normalize,
|
9 |
InterpolationMode,
|
10 |
+
CenterCrop,
|
11 |
)
|
12 |
from PIL import Image
|
13 |
import gradio as gr
|
|
|
16 |
(ys,) = np.load("embs.npz").values()
|
17 |
print("loaded embs")
|
18 |
model = torch.load(
|
19 |
+
"style-extractor-v0.3.0.ckpt",
|
20 |
map_location="cpu",
|
21 |
)
|
22 |
print("loaded extractor")
|
|
|
28 |
index = faiss.IndexHNSWFlat(d, 32)
|
29 |
print("building index")
|
30 |
index.add(ys)
|
31 |
+
print("index built")
|
32 |
+
|
33 |
+
|
34 |
+
def MyResize(area, d):
|
35 |
+
def f(im: Image):
|
36 |
+
w, h = im.size
|
37 |
+
s = (area / w / h) ** 0.5
|
38 |
+
wd, hd = int(s * w / d), int(s * h / d)
|
39 |
+
e = lambda a, b: 1 - min(a, b) / max(a, b)
|
40 |
+
wd, hd = min(
|
41 |
+
(
|
42 |
+
(ww * d, hh * d)
|
43 |
+
for ww, hh in [(wd + i, hd + j) for i in (0, 1) for j in (0, 1)]
|
44 |
+
if ww * d * hh * d <= area
|
45 |
+
),
|
46 |
+
key=lambda wh: e(wh[0] / wh[1], w / h),
|
47 |
+
)
|
48 |
+
|
49 |
+
return Compose(
|
50 |
+
[
|
51 |
+
Resize(
|
52 |
+
(int(h * wd / w), wd) if wd / w > hd / h else (hd, int(w * hd / h)),
|
53 |
+
InterpolationMode.BICUBIC,
|
54 |
+
),
|
55 |
+
CenterCrop((hd, wd)),
|
56 |
+
]
|
57 |
+
)(im)
|
58 |
+
|
59 |
+
return f
|
60 |
+
|
61 |
+
|
62 |
tf = Compose(
|
63 |
[
|
64 |
+
MyResize((518 * 1.3) ** 2, 14),
|
|
|
|
|
|
|
|
|
|
|
65 |
ToTensor(),
|
66 |
Normalize(mean=[0.4850, 0.4560, 0.4060], std=[0.2290, 0.2240, 0.2250]),
|
67 |
]
|
|
|
82 |
D, I = index.search(get_emb(im), n_outputs)
|
83 |
return [f"Distance: {d:.1f}\n![]({urls[i]})" for d, i in zip(D[0], I[0])]
|
84 |
|
85 |
+
|
86 |
print("preparing gradio")
|
87 |
with gr.Blocks() as demo:
|
88 |
gr.Markdown(
|
|
|
97 |
outputs.append(gr.Markdown(label=f"#{len(outputs) + 1}"))
|
98 |
btn.click(f, img, outputs)
|
99 |
print("starting gradio")
|
100 |
+
demo.launch()
|