Spaces:
Sleeping
Sleeping
import os | |
import re | |
import numpy as np | |
import pandas as pd | |
import plotly.express as px | |
import streamlit as st | |
st.set_page_config(layout="wide") | |
DATA_FILE = "data/gwf_2017-2021_specter2_base.json" | |
THEMES = {"cluster": "fall", "year": "mint", "source": "phase"} | |
st.markdown( | |
""" | |
<link href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" rel="stylesheet" integrity="sha256-DF7Zhf293AJxJNTmh5zhoYYIMs2oXitRfBjY+9L//AY=" crossorigin="anonymous"> | |
<link rel="preconnect" href="https://fonts.googleapis.com"> | |
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin> | |
<link href="https://fonts.googleapis.com/css2?family=Permanent+Marker&display=swap" rel="stylesheet"> | |
<style> | |
.title { | |
font-family: 'Permanent Marker', cursive; | |
font-size: 2.0rem; | |
} | |
</style>""", | |
unsafe_allow_html=True, | |
) | |
st.sidebar.write( | |
"""<center><p class="title"> | |
gwf-spectrum | |
</p></center>""", | |
unsafe_allow_html=True, | |
) | |
st.sidebar.write( | |
"""<p class="text-justify"> | |
An interactive t-SNE visualization of <a href="https://huggingface.co/allenai/specter2_base">spectre2</a> embeddings | |
featuring over 1K papers (titles and abstracts) from the | |
<a href="https://gwf-uwaterloo.github.io/gwf-publications/">Global Water Futures</a> program. | |
For more details, check out our README and our step-by-step guide <a href="https://huggingface.co/spaces/gwf-uwaterloo/acl-spectrum/blob/main/scipapers_scatter.ipynb">here</a>. | |
</p>""", | |
unsafe_allow_html=True, | |
) | |
st.sidebar.markdown( | |
"Happy exploring! :rocket::rocket:" | |
) | |
def to_string_authors(list_of_authors): | |
if len(list_of_authors) > 6: | |
return ", ".join(list_of_authors[:6]) + ", et al." | |
elif len(list_of_authors) > 2: | |
return ", ".join(list_of_authors[:-1]) + ", and " + list_of_authors[-1] | |
else: | |
return " and ".join(list_of_authors) | |
def load_df(data_file: os.PathLike): | |
df = pd.read_json(data_file, orient="records") | |
df["x"] = df["point2d"].apply(lambda x: x[0]) | |
df["y"] = df["point2d"].apply(lambda x: x[1]) | |
df["year"] = df["year"].replace("", 0) | |
df["year"] = df["year"].astype(int) | |
df["authors_trimmed"] = df.authors.apply( | |
lambda row: to_string_authors( | |
[(x[x.index(",") + 1 :].strip() + " " + x.split(",")[0].strip()) if "," in x else x for x in row] | |
) | |
) | |
if "publication_type" in df.columns: | |
df["type"] = df["publication_type"] | |
df = df.drop(columns=["point2d", "publication_type"]) | |
else: | |
df = df.drop(columns=["point2d"]) | |
return df | |
def load_dataframe(): | |
return load_df(DATA_FILE) | |
DF = load_dataframe() | |
DF["opacity"] = 0.04 | |
min_year, max_year = DF[DF["year"] > 0]["year"].min(), DF[DF["year"] > 0]["year"].max() | |
with st.sidebar: | |
start_year, end_year = st.select_slider( | |
"Publication year", | |
options=[str(y) for y in range(min_year, max_year + 1)], | |
value=(str(min_year), str(max_year)), | |
) | |
src = st.text_input("Source") | |
author_names = st.text_input("Author names (separated by comma)") | |
title = st.text_input("Title") | |
start_year = int(start_year) | |
end_year = int(end_year) | |
df_mask = (DF["year"] >= start_year) & (DF["year"] <= end_year) | |
if src: | |
df_mask = df_mask & DF.source.apply(lambda x: src.lower() in x.lower()) | |
if author_names: | |
authors = [a.strip() for a in author_names.split(",")] | |
author_mask = DF.authors.apply( | |
lambda row: all(any(re.match(rf".*{a}.*", x, re.IGNORECASE) for x in row) for a in authors) | |
) | |
df_mask = df_mask & author_mask | |
if title: | |
df_mask = df_mask & DF.title.apply(lambda x: title.lower() in x.lower()) | |
DF.loc[df_mask, "opacity"] = 1.0 | |
st.write(f"Number of points: {DF[df_mask].shape[0]}") | |
color = st.selectbox("Color", ("cluster", "year", "source")) | |
fig = px.scatter( | |
DF, | |
x="x", | |
y="y", | |
opacity=DF["opacity"], | |
color=color, | |
width=1000, | |
height=800, | |
custom_data=("title", "authors_trimmed", "year", "source", "keywords"), | |
color_continuous_scale=THEMES[color], | |
) | |
fig.update_traces( | |
hovertemplate="<b>%{customdata[0]}</b><br>%{customdata[1]}<br>%{customdata[2]}<br><i>%{customdata[3]}</i><br><i font-size='8'>Keywords: %{customdata[4]}</i>" | |
) | |
fig.update_layout( | |
# margin=dict(l=10, r=10, t=10, b=10), | |
showlegend=False, | |
font=dict( | |
family="Times New Roman", | |
size=30, | |
), | |
hoverlabel=dict( | |
align="left", | |
font_size=14, | |
font_family="Rockwell", | |
namelength=-1, | |
), | |
) | |
fig.update_xaxes(title="") | |
fig.update_yaxes(title="") | |
st.plotly_chart(fig, use_container_width=True) | |