hacpdsae2023 commited on
Commit
1db9e9a
·
1 Parent(s): d0f7403

Documentation

Browse files
Files changed (1) hide show
  1. app.py +10 -0
app.py CHANGED
@@ -4,8 +4,15 @@ import networkx as nx
4
  import numpy as np
5
  dataset = load_dataset("roneneldan/TinyStories")
6
 
 
 
 
 
 
 
7
  st.write(dataset['train'][10]['text'])
8
 
 
9
  threshhold = st.slider('Threshhold',0.0,1.0,step=0.1)
10
 
11
  #-------------------------------------------------------------
@@ -39,6 +46,8 @@ for i in range(len(sentences)):
39
  #G = nx.from_numpy_array(A)
40
  G = nx.from_numpy_array(cosine_scores.numpy()>threshhold)
41
 
 
 
42
 
43
  #-------------------------------------------------------------
44
  #-------------------------------------------------------------
@@ -98,4 +107,5 @@ return_value = agraph(nodes=nodes,
98
  edges=edges,
99
  config=config)
100
 
 
101
  st.write(str(nx.laplacian_centrality(G)))
 
4
  import numpy as np
5
  dataset = load_dataset("roneneldan/TinyStories")
6
 
7
+ st.markdown('# Short Stories, networks and connections')
8
+ st.markdown('In this example we consider the semantic similarity between short stories generatited by GenAI.')
9
+ st.markdown('We study the relationshis between the stories using a network. The laplacian connectivity provides inights about the closeness of the graph')
10
+
11
+ st.markdown('# Short Stories')
12
+ st.markdown('We are using a sample fo the TinyStories dataset from roneneldan work')
13
  st.write(dataset['train'][10]['text'])
14
 
15
+ st.markdown('The threshold changes the level of connectivity in the network. The reange is from 0 (less similar) to 1 (completely similar)')
16
  threshhold = st.slider('Threshhold',0.0,1.0,step=0.1)
17
 
18
  #-------------------------------------------------------------
 
46
  #G = nx.from_numpy_array(A)
47
  G = nx.from_numpy_array(cosine_scores.numpy()>threshhold)
48
 
49
+ st.markdown('We can visualize the similarity between the shorts stories as a network. It the similarity is greater than the threshold, the two nodes are conencted')
50
+
51
 
52
  #-------------------------------------------------------------
53
  #-------------------------------------------------------------
 
107
  edges=edges,
108
  config=config)
109
 
110
+ st.markdown('The Laplacian centrality is a measure of closeness')
111
  st.write(str(nx.laplacian_centrality(G)))