hacpdsae2023 commited on
Commit
fb5b606
·
1 Parent(s): 9884e92

Create app.0.py

Browse files

Satisfied with version 0. Want to add Laplacian centrality

Files changed (1) hide show
  1. app.0.py +99 -0
app.0.py ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from datasets import load_dataset
3
+ import networkx as nx
4
+ import numpy as np
5
+ dataset = load_dataset("roneneldan/TinyStories")
6
+
7
+ st.write(dataset['train'][10]['text'])
8
+
9
+ threshhold = st.slider('Threshhold',0.0,1.0,step=0.1)
10
+
11
+ #-------------------------------------------------------------
12
+ #-------------------------------------------------------------
13
+
14
+ from sentence_transformers import SentenceTransformer, util
15
+ model = SentenceTransformer('all-MiniLM-L6-v2')
16
+
17
+ # Sentences from the data set
18
+ #sentences = [item['text'] for item in dataset['train'][:10]]
19
+
20
+ #sentences = [dataset['train'][0],dataset['train'][1],dataset['train'][2]]
21
+ sentences = [dataset['train'][ii] for ii in range(10)]
22
+
23
+ #Compute embedding
24
+ embeddings = model.encode(sentences, convert_to_tensor=True)
25
+
26
+ #Compute cosine-similarities
27
+ cosine_scores = util.cos_sim(embeddings, embeddings)
28
+
29
+ # creating adjacency matrix
30
+ A = np.zeros((len(sentences),len(sentences)))
31
+
32
+ #Output the pairs with their score
33
+ for i in range(len(sentences)):
34
+ for j in range(i):
35
+ #st.write("{} \t\t {} \t\t Score: {:.4f}".format(sentences[i], sentences[j], cosine_scores[i][j]))
36
+ A[i][j] = cosine_scores[i][j]
37
+ A[j][i] = cosine_scores[i][j]
38
+
39
+ #G = nx.from_numpy_array(A)
40
+ G = nx.from_numpy_array(cosine_scores.numpy()>threshhold)
41
+
42
+
43
+ #-------------------------------------------------------------
44
+ #-------------------------------------------------------------
45
+ # ego_graph.py
46
+ # An example of how to plot a node's ego network
47
+ # (egonet). This indirectly showcases slightly more involved
48
+ # interoperability between streamlit-agraph and networkx.
49
+
50
+ # An egonet can be # created from (almost) any network (graph),
51
+ # and exemplifies the # concept of a subnetwork (subgraph):
52
+ # A node's egonet is the (sub)network comprised of the focal node
53
+ # and all the nodes to whom it is adjacent. The edges included
54
+ # in the egonet are those nodes are both included in the aforementioned
55
+ # nodes.
56
+
57
+ # Use the following command to launch the app
58
+ # streamlit run <path-to-script>.py
59
+
60
+ # standard library dependencies
61
+ from operator import itemgetter
62
+
63
+ # external dependencies
64
+ import networkx as nx
65
+ from streamlit_agraph import agraph, Node, Edge, Config
66
+
67
+ # First create a graph using the Barabasi-Albert model
68
+ n = 2000
69
+ m = 2
70
+ #G = nx.generators.barabasi_albert_graph(n, m, seed=2023)
71
+
72
+ # Then find the node with the largest degree;
73
+ # This node's egonet will be the focus of this example.
74
+ node_and_degree = G.degree()
75
+ most_connected_node = sorted(G.degree, key=lambda x: x[1], reverse=True)[0]
76
+ degree = G.degree(most_connected_node)
77
+
78
+ # Create egonet for the focal node
79
+ hub_ego = nx.ego_graph(G, most_connected_node[0])
80
+
81
+ # Now create the equivalent Node and Edge lists
82
+ nodes = [Node(title=str(sentences[i]['text']), id=i, label='node_'+str(i), size=20) for i in hub_ego.nodes]
83
+ edges = [Edge(source=i, target=j, type="CURVE_SMOOTH") for (i,j) in G.edges
84
+ if i in hub_ego.nodes and j in hub_ego.nodes]
85
+
86
+
87
+ config = Config(width=500,
88
+ height=500,
89
+ directed=True,
90
+ nodeHighlightBehavior=False,
91
+ highlightColor="#F7A7A6", # or "blue"
92
+ collapsible=False,
93
+ node={'labelProperty':'label'},
94
+ # **kwargs e.g. node_size=1000 or node_color="blue"
95
+ )
96
+
97
+ return_value = agraph(nodes=nodes,
98
+ edges=edges,
99
+ config=config)