File size: 6,259 Bytes
b884933 8c922bb 7351c15 a007d8f e3ada61 a007d8f 7f07a51 a007d8f 7f07a51 b884933 a007d8f b884933 a007d8f e3ada61 a007d8f 7f07a51 e3ada61 7f07a51 e3ada61 8c922bb 7f07a51 e3ada61 cce7e09 e3ada61 7f07a51 f16688d a007d8f e3ada61 f16688d a007d8f e3ada61 a007d8f e3ada61 7f07a51 a007d8f e3ada61 a007d8f e3ada61 7f07a51 a007d8f 7f07a51 e3ada61 7f07a51 e3ada61 7f07a51 e3ada61 7f07a51 e3ada61 7f07a51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import os
import streamlit as st
import tempfile
from langchain_openai import OpenAIEmbeddings
from langchain_openai.chat_models import ChatOpenAI
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import PyPDFLoader, WebBaseLoader
from langchain_community.document_loaders.generic import GenericLoader
from langchain_community.document_loaders.parsers import OpenAIWhisperParser
from langchain_community.document_loaders.blob_loaders.youtube_audio import (
YoutubeAudioLoader,
)
from langchain_community.vectorstores import Chroma
from langchain_core.messages import HumanMessage, AIMessage
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
openai_api_key = os.getenv("OPENAI_API_KEY")
st.set_page_config(page_title="Chat with your data", page_icon="🤖")
st.title("Chat with your data")
st.header("Add your data for RAG")
data_type = st.radio(
"Choose the type of data to add:", ("Text", "PDF", "Website", "YouTube")
)
if data_type == "YouTube":
st.warning(
"Note: Processing YouTube videos can be quite costly for me in terms of money. Please use this option sparingly. Thank you for your understanding!"
)
if "vectordb" not in st.session_state:
st.session_state.vectordb = None
def get_vectordb_from_text(text):
embeddings = OpenAIEmbeddings()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150)
texts = text_splitter.split_text(text)
vectordb = Chroma.from_texts(
texts=texts,
embedding=embeddings,
)
return vectordb
def get_vectordb_from_pdf(uploaded_pdf):
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file:
tmp_file.write(uploaded_pdf.read())
tmp_file_path = tmp_file.name
loader = PyPDFLoader(tmp_file_path)
pages = loader.load()
embeddings = OpenAIEmbeddings()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150)
docs = text_splitter.split_documents(pages)
vectordb = Chroma.from_documents(
documents=docs,
embedding=embeddings,
)
return vectordb
def get_vectordb_from_website(website_url):
loader = WebBaseLoader(website_url)
pages = loader.load()
embeddings = OpenAIEmbeddings()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150)
docs = text_splitter.split_documents(pages)
vectordb = Chroma.from_documents(
documents=docs,
embedding=embeddings,
)
return vectordb
def get_vectordb_from_youtube(youtube_url):
save_dir = "docs/youtube"
loader = GenericLoader(
YoutubeAudioLoader([youtube_url], save_dir), OpenAIWhisperParser()
)
pages = loader.load()
embeddings = OpenAIEmbeddings()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150)
docs = text_splitter.split_documents(pages)
vectordb = Chroma.from_documents(
documents=docs, embedding=embeddings, persist_directory="chroma"
)
return vectordb
if data_type == "Text":
user_text = st.text_area("Enter text data")
if st.button("Add"):
st.session_state.vectordb = get_vectordb_from_text(user_text)
elif data_type == "PDF":
uploaded_pdf = st.file_uploader("Upload PDF", type="pdf")
if st.button("Add"):
st.session_state.vectordb = get_vectordb_from_pdf(uploaded_pdf)
elif data_type == "Website":
website_url = st.text_input("Enter website URL")
if st.button("Add"):
st.session_state.vectordb = get_vectordb_from_website(website_url)
else:
youtube_url = st.text_input("Enter YouTube URL")
if st.button("Add"):
st.session_state.vectordb = get_vectordb_from_youtube(youtube_url)
llm = ChatOpenAI(api_key=openai_api_key, temperature=0.2, model="gpt-3.5-turbo")
def get_context_retreiver_chain(vectordb):
retriever = vectordb.as_retriever()
prompt = ChatPromptTemplate.from_messages(
[
MessagesPlaceholder(variable_name="chat_history"),
("user", "{input}"),
(
"user",
"Given the above conversation, generate a search query to look up in order to get information relevant to the conversation",
),
]
)
retriever_chain = create_history_aware_retriever(llm, retriever, prompt)
return retriever_chain
def get_conversational_rag_chain(retriever_chain):
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"Answer the user's questions based on the below context:\n\n{context}",
),
MessagesPlaceholder(variable_name="chat_history"),
("user", "{input}"),
]
)
stuff_domain_chain = create_stuff_documents_chain(llm, prompt)
return create_retrieval_chain(retriever_chain, stuff_domain_chain)
def get_response(user_input):
if st.session_state.vectordb is None:
return "Please add data first"
retrieveal_chain = get_context_retreiver_chain(st.session_state.vectordb)
converasational_rag_chain = get_conversational_rag_chain(retrieveal_chain)
response = converasational_rag_chain.invoke(
{"chat_history": st.session_state.chat_history, "input": user_input}
)
return response["answer"]
user_query = st.chat_input("Your message")
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
for message in st.session_state.chat_history:
if isinstance(message, HumanMessage):
with st.chat_message("Human"):
st.markdown(message.content)
else:
with st.chat_message("AI"):
st.markdown(message.content)
if user_query and user_query != "":
with st.chat_message("Human"):
st.markdown(user_query)
with st.chat_message("AI"):
ai_response = get_response(user_query)
st.markdown(ai_response)
st.session_state.chat_history.append(HumanMessage(user_query))
st.session_state.chat_history.append(AIMessage(ai_response))
|