Spaces:
Sleeping
Sleeping
halimbahae
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -2,20 +2,14 @@ import gradio as gr
|
|
2 |
import pandas as pd
|
3 |
import re
|
4 |
from huggingface_hub import InferenceClient
|
5 |
-
import spacy
|
6 |
-
from collections import Counter
|
7 |
import plotly.express as px
|
8 |
-
|
9 |
-
from datetime import datetime
|
10 |
-
|
11 |
-
# Load SpaCy model for NLP
|
12 |
-
nlp = spacy.load("en_core_web_sm")
|
13 |
|
14 |
# Initialize Hugging Face client
|
15 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
16 |
|
17 |
def parse_message(message):
|
18 |
-
"""Extract information from a chat message using regex
|
19 |
info = {}
|
20 |
|
21 |
# Extract timestamp and phone number
|
@@ -48,11 +42,6 @@ def parse_message(message):
|
|
48 |
thesis_match = re.search(r'[Tt]hesis:?\s*([^•\n]+)', content)
|
49 |
if thesis_match:
|
50 |
info['thesis_topic'] = thesis_match.group(1).strip()
|
51 |
-
|
52 |
-
# Extract LinkedIn URL
|
53 |
-
linkedin_match = re.search(r'https?://(?:www\.)?linkedin\.com\S+', content)
|
54 |
-
if linkedin_match:
|
55 |
-
info['linkedin'] = linkedin_match.group(0)
|
56 |
|
57 |
return info
|
58 |
|
@@ -85,7 +74,7 @@ def create_visualizations(df):
|
|
85 |
figures = []
|
86 |
|
87 |
# 1. Affiliation Distribution
|
88 |
-
if 'affiliation' in df.columns:
|
89 |
affiliation_counts = df['affiliation'].value_counts()
|
90 |
fig_affiliation = px.pie(
|
91 |
values=affiliation_counts.values,
|
@@ -104,8 +93,8 @@ def create_visualizations(df):
|
|
104 |
labels={'x': 'Field', 'y': 'Count'}
|
105 |
)
|
106 |
figures.append(fig_fields)
|
107 |
-
|
108 |
-
return figures
|
109 |
|
110 |
def respond(
|
111 |
message,
|
@@ -117,51 +106,52 @@ def respond(
|
|
117 |
chat_history_text=""
|
118 |
):
|
119 |
"""Enhanced response function with data analysis capabilities."""
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
135 |
|
136 |
-
|
137 |
-
figures = create_visualizations(df)
|
138 |
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
for token in client.chat_completion(
|
154 |
-
messages,
|
155 |
-
max_tokens=max_tokens,
|
156 |
-
stream=True,
|
157 |
-
temperature=temperature,
|
158 |
-
top_p=top_p,
|
159 |
-
):
|
160 |
-
token_content = token.choices[0].delta.content
|
161 |
-
response += token_content
|
162 |
-
yield response
|
163 |
|
164 |
-
# Create
|
165 |
demo = gr.Interface(
|
166 |
fn=respond,
|
167 |
inputs=[
|
@@ -177,8 +167,8 @@ demo = gr.Interface(
|
|
177 |
gr.Textbox(label="Response"),
|
178 |
gr.Plot(label="Community Analysis")
|
179 |
],
|
180 |
-
title="
|
181 |
-
description="
|
182 |
)
|
183 |
|
184 |
if __name__ == "__main__":
|
|
|
2 |
import pandas as pd
|
3 |
import re
|
4 |
from huggingface_hub import InferenceClient
|
|
|
|
|
5 |
import plotly.express as px
|
6 |
+
from collections import Counter
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# Initialize Hugging Face client
|
9 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
10 |
|
11 |
def parse_message(message):
|
12 |
+
"""Extract information from a chat message using regex."""
|
13 |
info = {}
|
14 |
|
15 |
# Extract timestamp and phone number
|
|
|
42 |
thesis_match = re.search(r'[Tt]hesis:?\s*([^•\n]+)', content)
|
43 |
if thesis_match:
|
44 |
info['thesis_topic'] = thesis_match.group(1).strip()
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
return info
|
47 |
|
|
|
74 |
figures = []
|
75 |
|
76 |
# 1. Affiliation Distribution
|
77 |
+
if 'affiliation' in df.columns and not df['affiliation'].empty:
|
78 |
affiliation_counts = df['affiliation'].value_counts()
|
79 |
fig_affiliation = px.pie(
|
80 |
values=affiliation_counts.values,
|
|
|
93 |
labels={'x': 'Field', 'y': 'Count'}
|
94 |
)
|
95 |
figures.append(fig_fields)
|
96 |
+
|
97 |
+
return figures[0] if figures else None
|
98 |
|
99 |
def respond(
|
100 |
message,
|
|
|
106 |
chat_history_text=""
|
107 |
):
|
108 |
"""Enhanced response function with data analysis capabilities."""
|
109 |
+
try:
|
110 |
+
# Process chat history if provided
|
111 |
+
if chat_history_text:
|
112 |
+
df = create_researcher_df(chat_history_text)
|
113 |
+
|
114 |
+
# Generate analysis summary
|
115 |
+
summary = f"Analysis of {len(df)} researchers:\n"
|
116 |
+
if 'affiliation' in df.columns:
|
117 |
+
summary += f"- Institutions represented: {df['affiliation'].nunique()}\n"
|
118 |
+
|
119 |
+
field_counts = analyze_research_fields(df)
|
120 |
+
if not field_counts.empty:
|
121 |
+
top_fields = field_counts.nlargest(3)
|
122 |
+
summary += "- Top research fields:\n"
|
123 |
+
for field, count in top_fields.items():
|
124 |
+
summary += f" • {field}: {count} researchers\n"
|
125 |
+
|
126 |
+
# Add analysis to message
|
127 |
+
message += f"\n\nCommunity Analysis:\n{summary}"
|
128 |
|
129 |
+
# Generate response using the LLM
|
130 |
+
messages = [{"role": "system", "content": system_message}]
|
131 |
+
for val in history:
|
132 |
+
if val[0]:
|
133 |
+
messages.append({"role": "user", "content": val[0]})
|
134 |
+
if val[1]:
|
135 |
+
messages.append({"role": "assistant", "content": val[1]})
|
136 |
|
137 |
+
messages.append({"role": "user", "content": message})
|
|
|
138 |
|
139 |
+
response = ""
|
140 |
+
for token in client.chat_completion(
|
141 |
+
messages,
|
142 |
+
max_tokens=max_tokens,
|
143 |
+
stream=True,
|
144 |
+
temperature=temperature,
|
145 |
+
top_p=top_p,
|
146 |
+
):
|
147 |
+
token_content = token.choices[0].delta.content
|
148 |
+
response += token_content
|
149 |
+
yield response
|
150 |
+
|
151 |
+
except Exception as e:
|
152 |
+
yield f"Error: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
+
# Create Gradio interface
|
155 |
demo = gr.Interface(
|
156 |
fn=respond,
|
157 |
inputs=[
|
|
|
167 |
gr.Textbox(label="Response"),
|
168 |
gr.Plot(label="Community Analysis")
|
169 |
],
|
170 |
+
title="CohortBot",
|
171 |
+
description="A chatbot that analyzes research community data and provides visualizations."
|
172 |
)
|
173 |
|
174 |
if __name__ == "__main__":
|