Spaces:
Runtime error
Runtime error
File size: 5,359 Bytes
916b126 606ab59 3f05732 6272555 3f05732 6272555 971b51c 916b126 9486ff0 916b126 9486ff0 916b126 9486ff0 916b126 73d2593 ddfdb2e 784e893 ddfdb2e 9486ff0 ddfdb2e 784e893 ddfdb2e 9486ff0 916b126 9486ff0 d06ff19 4d527d5 d06ff19 916b126 cae28d7 916b126 9486ff0 36d51ec 3c86beb 916b126 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
import gradio as gr
import numpy as np
import os
try:
from train import *
print('==> simple-knn & diff-gaussian-rasterization already installed!')
except:
print('==> simple-knn & diff-gaussian-rasterization are NOT installed!')
# https://github.com/pytorch/extension-cpp/issues/71
os.environ["TORCH_CUDA_ARCH_LIST"] = "3.5;5.0;6.0;6.1;7.0;7.5;8.0;8.6+PTX"
print('==> TORCH_CUDA_ARCH_LIST =', os.environ.get('TORCH_CUDA_ARCH_LIST'))
os.system("python -m pip install git+https://github.com/YixunLiang/simple-knn.git")
print('==> simple-knn installed!')
os.system("python -m pip install git+https://github.com/YixunLiang/diff-gaussian-rasterization.git")
print('==> diff-gaussian-rasterization installed!')
from train import *
example_inputs = [[
"A DSLR photo of a Rugged, vintage-inspired hiking boots with a weathered leather finish, best quality, 4K, HD.",
"Rugged, vintage-inspired hiking boots with a weathered leather finish."
], [
"a DSLR photo of a Cream Cheese Donut.",
"a Donut."
], [
"A durian, 8k, HDR.",
"A durian"
], [
"A pillow with huskies printed on it",
"A pillow"
], [
"A DSLR photo of a wooden car, super detailed, best quality, 4K, HD.",
"a wooden car."
]]
example_outputs_1 = [
gr.Video(value=os.path.join(os.path.dirname(__file__), 'example/boots.mp4'), autoplay=True),
gr.Video(value=os.path.join(os.path.dirname(__file__), 'example/Donut.mp4'), autoplay=True),
gr.Video(value=os.path.join(os.path.dirname(__file__), 'example/durian.mp4'), autoplay=True),
gr.Video(value=os.path.join(os.path.dirname(__file__), 'example/pillow_huskies.mp4'), autoplay=True),
gr.Video(value=os.path.join(os.path.dirname(__file__), 'example/wooden_car.mp4'), autoplay=True)
]
example_outputs_2 = [
gr.Video(value=os.path.join(os.path.dirname(__file__), 'example/boots_pro.mp4'), autoplay=True),
gr.Video(value=os.path.join(os.path.dirname(__file__), 'example/Donut_pro.mp4'), autoplay=True),
gr.Video(value=os.path.join(os.path.dirname(__file__), 'example/durian_pro.mp4'), autoplay=True),
gr.Video(value=os.path.join(os.path.dirname(__file__), 'example/pillow_huskies_pro.mp4'), autoplay=True),
gr.Video(value=os.path.join(os.path.dirname(__file__), 'example/wooden_car_pro.mp4'), autoplay=True)
]
def main(prompt, init_prompt, negative_prompt, num_iter, CFG, seed):
if [prompt, init_prompt] in example_inputs:
return example_outputs_1[example_inputs.index([prompt, init_prompt])], example_outputs_2[example_inputs.index([prompt, init_prompt])]
args, lp, op, pp, gcp, gp = args_parser(default_opt=os.path.join(os.path.dirname(__file__), 'configs/white_hair_ironman.yaml'))
gp.text = prompt
gp.negative = negative_prompt
if len(init_prompt) > 1:
gcp.init_shape = 'pointe'
gcp.init_prompt = init_prompt
else:
gcp.init_shape = 'sphere'
gcp.init_prompt = '.'
op.iterations = num_iter
gp.guidance_scale = CFG
gp.noise_seed = int(seed)
print('==> User Prompt:', gp.text)
if os.environ.get('QUEUE_1') != "True":
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ['QUEUE_1'] = "True"
lp.workspace = 'gradio_demo_1'
video_path, pro_video_path = start_training(args, lp, op, pp, gcp, gp)
os.environ['QUEUE_1'] = "False"
else:
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
lp.workspace = 'gradio_demo_2'
video_path, pro_video_path = start_training(args, lp, op, pp, gcp, gp)
return gr.Video(value=video_path, autoplay=True), gr.Video(value=pro_video_path, autoplay=True)
with gr.Blocks() as demo:
gr.Markdown("# <center>LucidDreamer: Towards High-Fidelity Text-to-3D Generation via Interval Score Matching</center>")
gr.Markdown("This live demo allows you to generate high-quality 3D content using text prompts. The outputs are 360° rendered 3d gaussian video and training progress visualization.<br> \
It is based on Stable Diffusion 2.1. Please check out our <strong><a href=https://github.com/EnVision-Research/LucidDreamer>Project Page</a> / <a href=https://arxiv.org/abs/2311.11284>Paper</a> / <a href=https://github.com/EnVision-Research/LucidDreamer>Code</a></strong> if you want to learn more about our method!<br> \
Note that this demo is running on A10G, the running time might be longer than the reported 35 minutes (5000 iterations) on A100.<br> \
© This Gradio space was developed by Haodong LI.")
gr.Interface(fn=main, inputs=[gr.Textbox(lines=2, value="A portrait of IRONMAN, white hair, head, photorealistic, 8K, HDR.", label="Your prompt"),
gr.Textbox(lines=1, value="a man head.", label="Point-E init prompt (optional)"),
gr.Textbox(lines=2, value="unrealistic, blurry, low quality, out of focus, ugly, low contrast, dull, low-resolution.", label="Negative prompt (optional)"),
gr.Slider(1000, 5000, value=3000, label="Number of iterations"),
gr.Slider(7.5, 100, value=7.5, label="CFG"),
gr.Number(value=0, label="Seed")],
outputs=["playable_video", "playable_video"],
examples=example_inputs,
cache_examples=True,
concurrency_limit=2)
demo.launch()
|