|
import gradio as gr |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import clip |
|
import pandas as pd |
|
import hashlib |
|
import numpy as np |
|
import cv2 |
|
from PIL import Image |
|
|
|
|
|
class MLP(nn.Module): |
|
def __init__(self, input_size, xcol="emb", ycol="avg_rating"): |
|
super().__init__() |
|
self.input_size = input_size |
|
self.xcol = xcol |
|
self.ycol = ycol |
|
self.layers = nn.Sequential( |
|
nn.Linear(self.input_size, 1024), |
|
nn.Dropout(0.2), |
|
nn.Linear(1024, 128), |
|
nn.Dropout(0.2), |
|
nn.Linear(128, 64), |
|
nn.Dropout(0.1), |
|
nn.Linear(64, 16), |
|
nn.Linear(16, 1), |
|
) |
|
|
|
def forward(self, x): |
|
return self.layers(x) |
|
|
|
def _binary_array_to_hex(arr): |
|
bit_string = ''.join(str(b) for b in 1 * arr.flatten()) |
|
width = int(np.ceil(len(bit_string) / 4)) |
|
return '{:0>{width}x}'.format(int(bit_string, 2), width=width) |
|
|
|
def phashstr(image, hash_size=8, highfreq_factor=4): |
|
if hash_size < 2: |
|
raise ValueError('Hash size must be greater than or equal to 2') |
|
|
|
import scipy.fftpack |
|
img_size = hash_size * highfreq_factor |
|
image = image.convert('L').resize((img_size, img_size), Image.Resampling.LANCZOS) |
|
pixels = np.asarray(image) |
|
dct = scipy.fftpack.dct(scipy.fftpack.dct(pixels, axis=0), axis=1) |
|
dctlowfreq = dct[:hash_size, :hash_size] |
|
med = np.median(dctlowfreq) |
|
diff = dctlowfreq > med |
|
return _binary_array_to_hex(diff.flatten()) |
|
|
|
def normalized(a, axis=-1, order=2): |
|
l2 = np.atleast_1d(np.linalg.norm(a, order, axis)) |
|
l2[l2 == 0] = 1 |
|
return a / np.expand_dims(l2, axis) |
|
|
|
def predict(image): |
|
model = MLP(768) |
|
pthpath = "https://huggingface.co/haor/aesthetics/resolve/main/sac%2Blogos%2Bava1-l14-linearMSE.pth" |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
model.load_state_dict(torch.hub.load_state_dict_from_url(pthpath, map_location=device)) |
|
model.to(device).eval() |
|
model2, preprocess = clip.load("ViT-L/14", device=device) |
|
|
|
image = Image.fromarray(image) |
|
image_np = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY) |
|
laplacian_variance = cv2.Laplacian(image_np, cv2.CV_64F).var() |
|
phash = phashstr(image) |
|
md5 = hashlib.md5(image.tobytes()).hexdigest() |
|
sha1 = hashlib.sha1(image.tobytes()).hexdigest() |
|
|
|
inputs = preprocess(image).unsqueeze(0).to(device) |
|
|
|
with torch.no_grad(): |
|
img_emb = model2.encode_image(inputs) |
|
img_emb = normalized(img_emb.cpu().numpy()) |
|
prediction = model(torch.from_numpy(img_emb).to(device).type(torch.cuda.FloatTensor)).item() |
|
|
|
result = { |
|
"clip_aesthetic": prediction, |
|
"phash": phash, |
|
"md5": md5, |
|
"sha1": sha1, |
|
"laplacian_variance": laplacian_variance |
|
} |
|
return result |
|
|
|
title = "CLIP Aesthetic Score" |
|
description = "Upload an image to predict its aesthetic score using the CLIP model and calculate other image metrics." |
|
|
|
gr.Interface( |
|
fn=predict, |
|
inputs=gr.Image(type="numpy"), |
|
outputs=gr.JSON(label="Result"), |
|
title=title, |
|
description=description, |
|
examples=[["example1.jpg"], ["example2.jpg"]] |
|
).launch() |