Spaces:
Runtime error
Runtime error
Added class data support
Browse files- app.py +2 -0
- trainer.py +11 -1
app.py
CHANGED
@@ -77,6 +77,7 @@ def create_training_demo(trainer: Trainer, pipe: InferencePipeline) -> gr.Blocks
|
|
77 |
with gr.Box():
|
78 |
gr.Markdown("Training Data")
|
79 |
concept_images = gr.Files(label="Images for your concept")
|
|
|
80 |
concept_prompt = gr.Textbox(label="Concept Prompt", max_lines=1)
|
81 |
gr.Markdown(
|
82 |
"""
|
@@ -202,6 +203,7 @@ def create_training_demo(trainer: Trainer, pipe: InferencePipeline) -> gr.Blocks
|
|
202 |
num_training_steps,
|
203 |
concept_images,
|
204 |
concept_prompt,
|
|
|
205 |
learning_rate,
|
206 |
gradient_accumulation,
|
207 |
fp16,
|
|
|
77 |
with gr.Box():
|
78 |
gr.Markdown("Training Data")
|
79 |
concept_images = gr.Files(label="Images for your concept")
|
80 |
+
class_images = gr.Files(label="Class images")
|
81 |
concept_prompt = gr.Textbox(label="Concept Prompt", max_lines=1)
|
82 |
gr.Markdown(
|
83 |
"""
|
|
|
203 |
num_training_steps,
|
204 |
concept_images,
|
205 |
concept_prompt,
|
206 |
+
class_images,
|
207 |
learning_rate,
|
208 |
gradient_accumulation,
|
209 |
fp16,
|
trainer.py
CHANGED
@@ -31,6 +31,7 @@ class Trainer:
|
|
31 |
self.is_running_message = "Another training is in progress."
|
32 |
|
33 |
self.output_dir = pathlib.Path("results")
|
|
|
34 |
self.instance_data_dir = self.output_dir / "training_data"
|
35 |
|
36 |
def check_if_running(self) -> dict:
|
@@ -52,6 +53,13 @@ class Trainer:
|
|
52 |
out_path = self.instance_data_dir / f"{i:03d}.jpg"
|
53 |
image.save(out_path, format="JPEG", quality=100)
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
def run(
|
56 |
self,
|
57 |
base_model: str,
|
@@ -59,6 +67,7 @@ class Trainer:
|
|
59 |
n_steps: int,
|
60 |
concept_images: list | None,
|
61 |
concept_prompt: str,
|
|
|
62 |
learning_rate: float,
|
63 |
gradient_accumulation: int,
|
64 |
fp16: bool,
|
@@ -93,6 +102,7 @@ class Trainer:
|
|
93 |
|
94 |
self.cleanup_dirs()
|
95 |
self.prepare_dataset(concept_images, resolution)
|
|
|
96 |
|
97 |
command = f"""
|
98 |
accelerate launch train_dreambooth.py \
|
@@ -116,7 +126,7 @@ class Trainer:
|
|
116 |
command += f""" --with_prior_preservation \
|
117 |
--prior_loss_weight={prior_loss_weight} \
|
118 |
--class_prompt="{class_prompt}" \
|
119 |
-
--class_data_dir={self.
|
120 |
"""
|
121 |
|
122 |
command += f""" --use_lora \
|
|
|
31 |
self.is_running_message = "Another training is in progress."
|
32 |
|
33 |
self.output_dir = pathlib.Path("results")
|
34 |
+
self.class_dir = self.output_dir / "class_data"
|
35 |
self.instance_data_dir = self.output_dir / "training_data"
|
36 |
|
37 |
def check_if_running(self) -> dict:
|
|
|
53 |
out_path = self.instance_data_dir / f"{i:03d}.jpg"
|
54 |
image.save(out_path, format="JPEG", quality=100)
|
55 |
|
56 |
+
def copy_class_data(self, class_images: list) -> None:
|
57 |
+
self.class_dir.mkdir(parents=True)
|
58 |
+
for i, temp_path in enumerate(class_images):
|
59 |
+
image = PIL.Image.open(temp_path.name)
|
60 |
+
out_path = self.class_dir / f"{i:03d}.jpg"
|
61 |
+
image.save(out_path, format="JPEG", quality=100)
|
62 |
+
|
63 |
def run(
|
64 |
self,
|
65 |
base_model: str,
|
|
|
67 |
n_steps: int,
|
68 |
concept_images: list | None,
|
69 |
concept_prompt: str,
|
70 |
+
class_images: list | None,
|
71 |
learning_rate: float,
|
72 |
gradient_accumulation: int,
|
73 |
fp16: bool,
|
|
|
102 |
|
103 |
self.cleanup_dirs()
|
104 |
self.prepare_dataset(concept_images, resolution)
|
105 |
+
self.copy_class_data(class_images)
|
106 |
|
107 |
command = f"""
|
108 |
accelerate launch train_dreambooth.py \
|
|
|
126 |
command += f""" --with_prior_preservation \
|
127 |
--prior_loss_weight={prior_loss_weight} \
|
128 |
--class_prompt="{class_prompt}" \
|
129 |
+
--class_data_dir={self.class_dir}
|
130 |
"""
|
131 |
|
132 |
command += f""" --use_lora \
|